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The Stern-Gerlach experiment, performed in 1922, is a seminal work of mod-

ern physics. It was the experiment that first showed the quantized nature of the

spin of an atom. This dissertation returns to this early experiment and describes

the design, construction, and characterization of a variation that produces a one-

dimensional Stern-Gerlach effect, or 1D kick, on a beam of neutral lithium atoms.

Our technique relies on the combination of a magnetic field gradient and a strong

bias field to generate a one-dimensional force on lithium entrained in a supersonic

helium beam. By adjusting the bias field via variable, pulsed currents, we demon-

strate the transition from a purely dispersive kick to a one-dimensional kick where

off-axis heating of the beam has been eliminated.

Pure one-dimensional forces enable access to new atomic and molecular cool-

ing methods that can replace or supplement existing techniques to produce larger

samples of cold atoms currently limited by evaporative cooling. Simulations sug-

gest that the proposed magneto-optical cooling utilizing one-dimensional kicks will
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increase the total number of atoms in cold atom traps by orders of magnitude, thus

opening applications such as high flux atom lasers and more sensitive atom interfer-

ometry.
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Chapter 1

A One-dimensional Magnetic Kick

The deflection of an atomic beam in an inhomogeneous magnetic field, known

as the Stern-Gerlach effect, is a textbook experiment [1] at the foundation of modern

physics. In the original work [2], performed by Otto Stern and Walter Gerlach in

1922, a collimated beam of silver atoms was passed through a permanent, spatially

varying magnetic field (see Figure 1.1). The deflected trajectories detected on a

screen downstream showed two distinct lines, thereby demonstrating the quantized

nature of atomic angular momentum and the existence of electron spin.

The effect has since found application in atom optics [4, 5, 6, 7, 8, 9, 10],

atom interferometry [11, 12], and isotope separation [13]. The collimating slit used

in the original experiment minimized the beam divergence expected from Maxwell’s

equations which forbid a purely one-dimensional magnetic field gradient. Creating

a one-dimensional Stern-Gerlach effect has practical implications for the ability to

control atoms with magnetic fields [14] and the design of “flat” mirrors capable of

reflecting particles specularly without the dispersion of wave vectors [4, 5, 6]. Another

exciting application is the potential to simulate microgravity conditions. Using a one-

The experiment, analysis, and results presented in this dissertation substantially expand upon
the body of work documented in our recently published paper [3]. Furthermore, the introductory
paragraphs here are based on the paper’s introduction.
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Figure 1.1: Results of the original Stern-Gerlach experiment where the magnetic
deflection of silver atoms was shown to be quantized. On the left is an image that
shows an exposure of the silver beam on the detector plate (black silver sulfide)
without magnetic fields. On the right the inhomogeneous field was included and
split the silver beam into two distinct lines [2].
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dimensional force to cancel gravity, one may conduct non-contact studies of levitated

magnetic nanoparticles, improve loading of atoms into optical dipole traps [15], and

further research of cold atoms in force-free environments without leaving Earth [16].

Finally, and of particular interest to our group, the proposed method of magneto-

optical cooling, which relies on cycles of optical pumping and one-dimensional pulsed

magnetic kicks, will compress atomic phase space one dimension at a time without

loss of atoms [17].

A one-dimensional Stern-Gerlach effect can be created if we consider a cloud of

atoms each with a magnetic dipole moment µ in the presence of a spatially dependent

magnetic field B(r). Atoms will experience the combination of rectilinear motion

and precession of the magnetic moment caused by the force ∇(µ · B) and torque

µ × B, respectively. For sufficiently fast precession (' 100 MHz for fields greater

than 10 G), an adiabatic approximation is valid in which the magnetic moment

is taken to be always parallel to the magnetic field. In this approximation the

average force F = µ∇|B| determines the motion of each atom, which indicates

the existence of magnetic field configurations that provide an approximately one-

dimensional kick over the finite extent of the atomic cloud. One such configuration

was considered in the design of magnetic mirrors [5, 7]. An alternative configuration

that we employ is the sum of a strong bias field and a gradient. In this case, as

long as the size of the atomic cloud d satisfies the condition |d∇B| � Bbias, where

B = |B| = |Bbias+Bgradient| and Bbias = |Bbias|, then all atoms in the cloud experience

the same force and undergo a one-dimensional kick. Additionally, for an atomic beam

experiment like the original Stern-Gerlach demonstration, the above condition is not
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satisfied when the cloud enters or exits the field region. One straightforward solution

to this problem is to pulse the fields only while the cloud is centered in the kicking

region.

In this dissertation, we demonstrate a quasi-one-dimensional Stern-Gerlach

effect on a supersonic beam of lithium-7 atoms with a pulsed magnetic field gradient

plus a strong bias.

1.1 A closer inspection of the Stern-Gerlach experiment

Before delving into the details of the Stern-Gerlach effect it is instructive

to first review the attributes of magnetic moments. Magnetic moments, or more

specifically, magnetic dipole moments are the magnetic analog of the electric dipole.

For simplicity, consider two magnetic monopoles1 of charge ±m which are rigidly

connected and separated by a vector d. Exposing this dipole to a magnetic field

B(r) will create a total force

F = mB(r1)−mB(r2) (1.1)

where r1 and r2 are the positions of the two charged monopoles. In the absence of

a inhomogeneous magnetic field there will be no net force since the monopoles act

equally and oppositely in the field. Reducing the separation between the monopoles

and defining µ ≡ md, we can approximate the force as

F = (µ · ∇)B . (1.2)

1though never observed in nature
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Figure 1.2: Layout of the original Stern-Gerlach experiment [18]. A furnace (O) on
the left is heated by a resistive wire (W) to evaporate and produce an effusive beam
of silver atoms. Collimation of the beam was done with a 1 mm aperture (Sp1) and
a rectangular 0.8 mm × ∼0.04 mm slit (Sp2). The collimated beam passes through
the magnet (M) before being collected on a cooled detection plate (P).

Under classical physics the magnetic moment is free to assume any orientation with

respect to a magnetic field. This would imply a continuous range of possible forces.

This assumption, however, is not valid when considering the behavior of atomic

magnetic moments. Stern and Gerlach showed in their seminal work in 1922 [2] that

the magnetic moment is quantized with respect to the magnetic field. An image of

their results is shown in Figure 1.1 where a beam of silver was passed through two

magnets that created an inhomogeneous magnetic field. Classically, we would have

expected a broadened distribution, but they observed two clearly separated streaks

hinting at the quantization of the spatial orientation of angular momentum.

The fact that µ·B assumes only discrete values has immediate implications for

the control of atoms. Using the methods to be described in Chapter 3 we can optically

prepare the state of atoms such that they will behave in a very specific way under

a magnetic gradient. More precisely, we write down the interaction Hamiltonian of

5



the atom in a magnetic field as

Hint = −µ ·B . (1.3)

The semi-classical force can then be easily expressed as

F = −∇U = ∇〈µ ·B〉 = 〈µ〉∇B (1.4)

where B is the magnitude of the magnetic field and orientation of µ has been absorbed

into the expectation value of 〈µ〉. Atoms whose magnetic moments are aligned

with the field such that 〈µ〉 > 0 will be attracted by strong magnetic fields and

henceforth denoted as high-field-seeking (HFS) atoms. We focus on these atoms for

our experiment as one of the two 7Li 2S1/2 ground states that is purely HFS (see

Chapter 3 for more details).

An interesting detail of the original Stern-Gerlach experiment is that the

inhomogeneous magnetic field also imparts large forces along the axis orthogonal to

the propagation. This is simply a side-effect of Maxwell’s equations where ∇·B = 0

implies that the instant a nonuniform field is introduced, gradients, and thus forces,

must exist along another axis. This important point is often neglected in simple

descriptions. For example, Feynman [19] states

The beam of silver atoms was directed right along this sharp edge, so that

the atoms would feel a vertical force in the inhomogeneous field. A silver

atom with its magnetic moment directed horizontally would have no force

on it and would go straight past the magnet.

6



Figure 1.3: Stern-Gerlach magnet arrangement. The silver atoms propagate along
the y-axis.

At first glance his statement appears incorrect, but giving Feynman the benefit of

the doubt, we assume that his comments are on the time-averaged forces rather

than any forces. Many have discussed these time-averaged forces in either the semi-

classical limit [20, 21, 22] or the fully quantum equivalent [1]. The semi-classical

treatment will be sufficient for our system and we will follow the logic presented in

the aforementioned references.

1.1.1 Larmor precession

Let us assume a similar magnetic arrangement as that of Stern and Gerlach,

shown in Figure 1.3, which produces a magnetic field B = B(x, z) as long as we are

not near the ends of the magnets. Gauss’s law for magnetism, ∇·B = 0, would then

yield

∂xBx = −∂zBz and ∂xBz = −∂zBx . (1.5)

Inserting these two equations into Equation 1.4 we obtain

F = (µx∂xBx + µz∂xBz, 0, µx∂zBx + µz∂zBz) (1.6)

7



where the force of the x and z components are clearly of similar magnitude. In

order to accurately describe the the motion of the atoms, we must also include the

torque, τ = µ×B, the atoms experience. Torque, being an axial vector, will create

a force orthogonal to µ and result in a precession of the magnetic moment around

the magnetic field B. Noting that the change in the spin S can be expressed as

Ṡ = ω× S (1.7)

where ω is the angular velocity with which the spin precesses, we can write the

precession of the magnetic moment as

µ̇ = ωL × µ (1.8)

where ωL = (µBgS/~)B using Equation 3.16. This is commonly known as the Lar-

mor precession frequency. It is convenient to pause here and mention an important

concept known as adiabatic following. Once an atom has assumed a particular angu-

lar momentum eigenstate it will reside in this state indefinitely. For slow variations

in the magnetic field the atom will constantly reorient itself maintaining the state it

has assumed. This can be stated more rigorously in terms of the Larmor frequency

ωL �
∣∣∣∣ ddt
(

B

B

)∣∣∣∣ . (1.9)

Only when the direction of the magnetic field changes abruptly at timescales com-

parable to the Larmor frequency will the atoms leave their eigenstate.

Returning to Equation 1.8 and expanding the general solutions of this equa-
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tion we obtain expressions for the magnetic moment projections:

µx(t) = µx(0)

[
1− 2ω2

z

ω2
sin2

(
ωt

2

)]
− ωz

ω
µy(0) sin (ωt) +

2ωxωz
ω2

µz(0) sin2

(
ωt

2

)
,

µy(t) = µy(0) cos (ωt) +
ωzµx(0)− ωxµz(0)

ω
sin (ωt) ,

µz(t) = µz(0)

[
1− 2ω2

x

ω2
sin2

(
ωt

2

)]
− ωx

ω
µy(0) sin (ωt) +

2ωxωz
ω2

µx(0) sin2

(
ωt

2

)
.

Inserting these expressions into Equation 1.6 and taking the time average, we can

express the force that the atoms will experience when traveling between the magnets:

F avg
x =

[
µx(0)

(
1− ω2

z

ω

)
+ µz(0)

ωxωz
ω2

]
∂xBx

+

[
µz(0)

(
1− ω2

x

ω

)
+ µx(0)

ωxωz
ω2

]
∂xBz

F avg
z =

[
µz(0)

(
1− ω2

x

ω

)
+ µx(0)

ωxωz
ω2

]
∂zBz (1.10)

+

[
µx(0)

(
1− ω2

z

ω

)
+ µz(0)

ωxωz
ω2

]
∂z Bx

with Fy vanishing. In the case of a narrow beam propagating in the plane of the

y, z-axis, the ωx, ∂xBz, and ∂zBx terms will also vanish yielding

F(t) =
(
− µx(0) cos(ωt) + µy(0) sin(ωt) , 0 , µz(0)

)
∂zBz (1.11)

where ω = ωz. In their original experiment Stern and Gerlach had magnetic fields

of order 1000 G [23] which would produce a precession of the magnetic moment at

∼ 0.1 THz. Considering the length of the actual magnets, we can estimate the effect

that the field has on the change in momentum of the beam:

∆p =

∫ τ

0

F(t)dt

=
(
− µx(0)

ωτ
sin(ωτ) +

µy(0)

ωτ
(1− cos(ωτ) , 0 , µz(0)

)
∂zBz (1.12)
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where τ is the length of time the atoms are within the bounds of the magnets.

Noting that the x-component is smaller than the z-component by a factor of ωτ we

can safely say that the net force on the atoms in the transverse x-axis is negligible

and essentially 0 for any macroscopic length scale or beam velocities. At first glance,

it appears that this simple analysis results in a one-dimensional force.

1.1.2 Inclusion of a magnetic bias

In estimating the momentum change and Larmor frequency, we lost much

of the richness that the original Stern-Gerlach experiment has to offer. Exploring

some of the off-axis effects will provide a natural motivation for the concept of a

one-dimensional momentum kick. Let us rewind and return to Equation 1.10.

In general the terms ωx, ∂xBz, and ∂zBx do not vanish when we move off-

axis. While the beam does produce directional motion of the cloud center, the

nonzero terms effectively heat or spread the beam. We have naively assumed the

magnetic field to be too simple and it would be instructive to look more closely at

the construction of the original magnets. While others were attempting to reproduce

the results of Stern and Gerlach they note the specific construction of the magnets.

Taylor writes [24, 21]

A large Dubois type magnet, possibly a duplicate of Stern and Gerlach’s,

was used to produce the magnetic field. The apparatus for formation,

deflection, and detection of the atomic rays was suspended between the

flat pole pieces of this magnet... The auxiliary pole pieces for producing

the inhomogeneous field were of soft iron... One pole piece was a 60’

10



knife edge, the other slotted... Magnetic measurements showed the field

produced and the inhomogeneity of the field to be closely that used by

Stern and Gerlach...

The implication of this description is that, in order to recreate the original setup,

Stern and Gerlach used the auxiliary pole pieces to create the inhomogeneous field

component B(x, z) that we already discussed. They also used a large magnet to

produce a near constant field B0. Together this defines a new field

Bt = B +B0 k̂ . (1.13)

Using this newly constructed field, Equation 1.8 which describes the precession will

simplify greatly if |B0| � |B|. This allows us to approximate the total magnetic

field as just the constant bias (Bt ≈ B0). Making this simplification, Equation 1.8

reduces to

µ̇ =
(gsµB

~
B0

)
k̂× µ (1.14)

which also produces the simpler force equations of Equation 1.11. For a sufficiently

large bias, the force applied in this case is one-dimensional.

Equation 1.13 is the fundamental basis of the remainder of this dissertation.

The two terms, B and B0 k̂, address two key items that we require for our definition

of one-dimensionality. The first is that B is the arbiter of directed motion through

the force F = 〈µ〉∇|B| = µBgJmJ∇B which will be used to create a quick impulse,

or ‘kick,’ on the atoms. The second is that the bias B0 controls the degree of beam

heating. At a high bias we expect a kicked cloud to be translationally displaced

without influencing its expansion.
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We implement a system of pulsed electromagnetic coils to variably select the

bias field strength during a magnetic kick and demonstrate a one-dimensional Stern-

Gerlach effect.
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Chapter 2

Atomic Beams

Atomic beams are the foundation of many of the experiments in our lab and

are the starting point of the experiment covered in this dissertation. Being such an

integral component to all that follows, it is useful to provide a basic description of

ideal gases and their behavior in different regimes.

The simplest beam we can envision is that of an effusive beam created by

releasing a gas through a hole into vacuum. The source could be a heated vapor

oven or a highly pressurized gas line; however, generally all that is required is higher

pressure gas flowing to a lower pressure region through an opening. We can divide

the characteristics of the gas into two regimes by comparing the mean free path Λ,

the average distance between collisions of the gas, to that of the opening diameter d.

The mean free path is given by

Λ =
1

1.4761ρ σ
≈ 1

ρ σ
√

2
, (2.1)

where ρ is the particle number density and σ is the collision cross section of the

particles in the hard sphere model [25, 26, 27]. When the dimensions of the mean

free path are much larger than that of the opening, Λ > d, the gas is said to be in

the effusive regime. In the case of an ideal gas the mean free path can be restated as

Λ ≈ kBT

Pσ
√

2
, (2.2)
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where P is the pressure, kB is the Boltzmann constant, and T is the temperature

of the gas in Kelvin. The speed distribution within the reservoir will follow the

Maxwell-Boltzmann distribution [28]

f(v) =
4√
π

(
m

2kBT

)3/2

v2 exp

(
−mv2

2kBT

)
, (2.3)

where m is the mass of a single particle and v is the magnitude of the velocity. The

probability of a particle exiting the reservoir through the opening will be proportional

to its velocity. Thus, the beam will acquire an extra dependence on velocity yielding

a beam intensity [29]

I(v) = I0

(
m2

2k2BT
2

)
v3 exp

(
−mv2

2kBT

)
, (2.4)

where I0 is the full beam intensity. Furthermore, since the last collision that the

gas undergoes is far from the reservoir, the beam is not significantly affected by the

geometry of the opening.

Increases in pressure will lead to a reduction of the mean free path. Once

d > Λ the reservoir opening will begin to influence the dynamics of expansion. This

is known as the continuum regime and the gas begins to act like a compressible fluid.

Operating in this regime offers many advantages over the effusive regime: beams are

brighter as a result of higher reservoir pressures, gas temperatures are much cooler,

and the gas is more focused and directional. The following sections will further

substantiate this claim by summarizing discussions presented in [28, 30].
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2.1 Thermodynamics

The desirable properties of the supersonic regime can be seen by examining

flow of an ideal gas through an opening such that d > Λ. We start with the ideal

gas law

P = ρ kBT . (2.5)

We can express the first law of thermodynamics in terms of the internal energy e

and heat q per unit mass:

dq = du+ P d(ρ−1) , (2.6)

where ρ−1 is specific volume corresponding to the volume of unit mass. The enthalpy

per unit mass h is the sum of the internal energy and mechanical energy per unit

mass,

h = u+
P

ρ
. (2.7)

In the case of isentropic flow, there is no heat exchange between the gas and its

surroundings during expansion (dq = 0). Then Equation 2.6 and Equation 2.7

become

0 = du+ Pd(ρ−1) (2.8)

and

0 = dh+
1

ρ
dP . (2.9)

The definitions of the specific heats at constant volume, cV , and at constant pressure,

cP , are defined as

cV ≡
(
∂e

∂T

)
V

=

(
de

dT

)
V

and cP ≡
(
∂h

∂T

)
P

=

(
dh

dT

)
P

(2.10)
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where the replacement of the partial derivatives is valid for ideal gases. Using Equa-

tion 2.7, Equation 2.10, and the convenient ratio of specific heats κ = cP/cV the

following relation is obtained:

κ
dρ

ρ
=
dP

P
. (2.11)

Integration and appropriate use of the ideal gas law will yield the well-known relation

P2

P1

=

(
T2
T1

)κ/(κ−1)
, (2.12)

which is a concise description of an adiabatic expansion where P2 < P1. This simpli-

fied treatment with ideal gases reveals that expansions into a vacuum will cool the

gas.

2.2 Gas flow in one dimension

The claim that supersonic beams are more directional is ultimately a result

of the transfer of random thermal energy into forward directional velocity. To arrive

at this conclusion we consider the steady flow of a gas as a flow of a homogeneous,

compressible medium where the velocity of the flow w, the density ρ, and the pressure

P are functions of space only. We will recast three conservation laws into a form

more suitable for continuum mechanics:

Conservation of Mass: ∇(ρw) = 0 (2.13)

Conservation of Momentum: ρ
Dw

Dt
= −∇P (2.14)

Conservation of Energy:
D

Dt

(
h+

w2

2

)
= 0 . (2.15)
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The operator seen in the last two equations is known as the material derivative and

is defined as

D

Dt
≡ ∂

∂t
+ (w∇) (2.16)

where the time derivative is separated into two components: a purely temporal

change of a property and a change originating from the flow. We note that the

second equation is vectoral and will lead to three partial differential equations for

each momentum component. Furthermore, including the other two equations will

result in a set of nonlinear equations in all three variables of space and time. To make

further progress we will impose the assumption that the flow is one-dimensional and

only depends on the distance through the flow. This simplification is valid while the

rate of change of the cross-sectional area A is small in the direction of the flow. The

conservation laws under this assumption yield the following equations:

Conservation of Mass:
dw

w
+
dρ

ρ
+
dA

A
= 0 (2.17)

Conservation of Momentum: w dw = −dP
ρ

(2.18)

Conservation of Energy: w dw + dh = 0 . (2.19)

2.3 Mach numbers and supersonic flow

Before using the one-dimensional conservation laws introduced above to de-

scribe some of the properties of supersonic flow there are additional concepts to

address: the speed of sound c and the Mach number Ma. Information in the flow is
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transmitted as a pressure disturbance whose speed for an ideal gas is

c =

√
κP

ρ
. (2.20)

This equation assumes that there is no motion of the medium; however, motion of

the frame can be included through a simple Galilean addition of velocities. Con-

sequently, in the case of one-dimensional motion the disturbance would propagate

with a velocity of c±w where the sign depends on whether the wave travels with or

against the flow. In the case where flow velocity exceeds the speed of sound (w > c),

information can no longer propagate backwards through the flow and the flow is then

termed supersonic. A convenient quantity is the ratio of the flow velocity to the local

speed of sound

Ma =
w

c
, (2.21)

which is a measure of the directed flow to that of the random thermal motion of the

gas.

Combining the momentum conservation law with Equation 2.11 yields:

dA

A
+
dw

w

(
1−M2

a

)
= 0 . (2.22)

Many of the details of one-dimensional flow can be gleaned from this single equation.

For flows such that w < c (Ma < 1), the increases in the cross-sectional area A lead

to decreases in the velocity, and vice versa. Once the flow exceeds the speed of sound

(Ma > 1) the behavior flips: increases in the area lead to increases in flow velocity,

and vice versa. To transition from sonic to supersonic Ma must cross unity and thus

the channel will have a minimum cross-sectional area (dA = 0) known as the ‘throat.’
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Therefore, a supersonic flow can only emerge if a convergent-divergent nozzle, often

called a Laval nozzle, is used.

Upon integrating the one-dimensional energy equation, we obtain the expres-

sion

w2
2 − w2

1

2
= h2 − h1 , (2.23)

illustrating how the enthalpy of the original gas is transferred to translational kinetic

energy. Using the definition of the heat capacity at constant pressure, Equation 2.23

can be expressed as

w2
2 − w2

1 = 2cPT1

(
1− T2

T1

)
. (2.24)

In the case of our supersonic nozzle, the point of origin of the gas is assumed to be

within a reservoir where the flow velocity is negligibly small (w1 ≈ 0). Under this

assumption, an expression for the final speed of the gas can be written as a function

of either gas temperature or pressure of the reservoir with the help of Equation 2.12

w =

√
2

κ

κ− 1

RT0
M

[
1−

(
T

T0

)]
=

√√√√2
κ

κ− 1

RT0
M

[
1−

(
P

P0

)(κ−1)/κ
]
, (2.25)

Since we will be releasing the gas into vacuum with a negligible pressure the maximum

speed we can expect to obtain is

wmax = vmp

√
κ

κ− 1
=

√
2

κ

κ− 1

kBT0
m

, (2.26)

where vmp is the most probable speed of the distribution in the gas phase. The

modifying constant is greater than unity and shows that the supersonic expansion

will have a higher maximum speed than gas held within the reservoir.
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Figure 2.1: Expansion of a free jet of gas. Image reproduced from [28].

2.4 Supersonic beams as a cold, fast source of atoms

The preceding sections illustrate many of the features of adiabatic expansions

in one dimension, primarily a supersonic beam will be both fast and cold. However,

realistic beams expand in three dimensions and exhibit more complicated behavior.

Despite this, much of the previous discussion is still valid and has been simulated

and measured[31, 32, 33]. Many details seen in Figure 2.1 such as the angular extent

of the supersonic flow, the barrel shock, and Mach disks can found in [28].

We can model the velocity distribution as an anisotropic Maxwellian distri-

bution

f(v) =

√
m

2πkBT‖

(
m

2πkBT⊥

)
exp

[
− m

2kB

(
(v‖ − w)2

T‖
+
v2⊥
T⊥

)]
, (2.27)

where T‖ and T⊥ are the temperatures of the beam parallel and perpendicular to the

axis of propagation, respectively. Likewise, the notation holds for the velocities v‖,⊥.
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Figure 2.2: Velocity distributions of effusive and supersonic beams from a helium
source held at 300 K and 18 K. Because both distributions have been normalized
to their peak values, the difference in brightness of approximately three orders of
magnitude is obscured [28].

In order to produce very cold transverse beams, the beam is passed through skimmers

and apertures to extract the cold interior. Effectively, the transverse temperature

manifests as a loss of atoms, so it is appropriate to focus on only the parallel com-

ponent of the anisotropic Maxwellian distribution

f‖(v‖) =

√
m

2πkBT‖
exp

[
−
m(v‖ − w)2

2kBT‖

]
. (2.28)

This velocity distribution is compared with a standard Maxwellian velocity distri-

bution in Figure 2.2 for helium with the same reservoir temperatures. Immediately

apparent is the stark difference in the widths of the two distributions with the super-

sonic beam being much narrower. At room temperature helium will be a few Kelvin;

however, cryogenically cooling the reservoir to ∼20 K produces beams with temper-
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atures as low as 200 mK. Furthermore, the distribution is shifted up in velocity by

a factor
√
κ/(κ− 1) ≈ 1.6 in the case of helium.

2.5 Time-of-flight analysis

For an isolated supersonic beam, it is possible to predict its expansion solely

from the properties of the source reservoir. We will, however, be using the beam as

a vehicle for entrainment of other atomic species (entraining lithium into a helium

beam). It is useful to have an additional independent method available to measure

the beam expansion and quantify its temperature without explicit knowledge of the

properties of the source reservoir. Following the work of [34, 35, 36], we adopt a

model describing the evolution of a beam. Assuming once again that expansion

is Maxwellian in velocity and Gaussian in space, we can express the probability

distribution of locating an atom in the phase space volume (x0,v0) as [35, 36]

N(x0, y0, z0, vx0, vy0, vz0) =
∏

i∈{x,y,z}

g(i0, σi0) g(vi0, σiv) , (2.29)

where g(x, σ) = (2πσ2)−1/2 exp(−x2/(2σ2)) is the general function for a normalized

Gaussian distribution with a variance of σ2. In principle each dimension of the

distribution can be initialized with its own spatial variance σ2
i0 and thermal variance

σ2
iv. Likewise, the temperature of each axis is related to the thermal velocity of the

distribution as

Ti =
m

kB
σ2
iv (2.30)
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where i ∈ {x, y, z}. A time-of-flight model of the atomic cloud can be created by

relating the velocity components to the cloud’s position and time

vx0 =
x− x0
t− t0

, vy0 =
y − y0
t− t0

, vz0 =
z − z0
t− t0

+ w , (2.31)

where x0 and t0 are the initial positions and times of the beam, respectively. The

z-component includes the initial propagation velocity w of the beam. Making the

above transformation and integrating Equation 2.29 over all initial positions yields

the probability distribution of finding an atom at position (x,y,z) after time t

N(x, y, z, t) = g(x, σt) g(y, σt) g(z + w, σt), (2.32)

where, importantly, σt =
√
σ2
i0 + σ2

ivt
2 for i ∈ {x, y, z}. We will directly measure σt

at various points in our experiment in order to extract σiv. This will be subsequently

used to calculate the heating that is caused by the magnetic gradient forces generated

from our kick. From this expression it is readily apparent that the temperature T of

a cloud can be measured from two positions:

T =
m

kB

σ2
2 − σ2

1

t22 − t21

=
m

kB

(σ2
0 + σ2

vt
2
2)− (σ2

0 + σ2
vt

2
1)

t22 − t21
=
m

kB
σ2
v . (2.33)

23



Chapter 3

Atomic Physics with Lithium

Lithium, derived from the Greek word λιθος meaning ‘stone’, is the lightest

metal and solid in the periodic table. As a member of the alkali group, it is highly

reactive to water and must be handled with care in atmosphere to prevent oxidation

or spontaneous ignition in humid environments. Some of its physical properties are

shown in Table 3.1. Many of the experiments related to this work start with an

effusive beam of lithium requiring vaporization of the metal. The vapor pressure of

lithium below the melting point as a function of temperature follows

log(P ) = 10.673− 8310

T
(3.1)

where the pressure P and the temperature T are measured in Pa and K, respectively.

Beyond the melting point the vapor pressure is better described by

log(P ) = 10.061− 8023

T
(3.2)

Property Symbol Value Reference
Density ρ 0.534 g/cm3 [37]
Melting Point TM 453.69 K [37]
Boiling Point TB 1615 K [37]

Table 3.1: Physical properties of lithium.
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Figure 3.1: Vapor pressure of lithium as a function of temperature. The vertical
black line delineates the melting point TM of lithium at 453.69 K.

with only slight changes of the constants. Both fits are accurate to within five percent

of measured data [37]. These fits are displayed in Figure 3.1 across a broad range

of temperatures representative of typical operating conditions addressed throughout

this dissertation.

3.1 Atomic structure of lithium-7

Elemental lithium has only two naturally occurring stable isotopes: 6Li and

7Li with abundances of 7.6% and 92.4%, respectively. This work addresses only the

properties of the heavier variety 7Li and henceforth will be assumed if not explic-

itly stated. Many of the fundamental properties of the element are summarized in

Table 3.2.
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Property Symbol Value Reference
Atomic Number Z 3
Nucleons Z +N 7
Natural Abundance η 92.4% [37]
Atomic Mass m 7.016003 u [37]
Total Electronic Spin S 1/2
Total Nuclear Spin I 3/2 [37]

Table 3.2: Atomic properties of 7Li

Like all alkali metals in the first column of the periodic table, 7Li has only a

single valence electron that will be the main contributor of the atomic physics. In

the ground state configuration, 1s22s1, the electron will reside in the s orbital with

zero angular momentum. Under an excitation the electron will be promoted upward

into the 1s22p1 configuration and acquire a unit of angular momentum. These two

states are commonly referred to by their spectroscopic notation as 2S and 2P for the

ground and excited states, respectively, and comprise all of the commonly known

D-line transitions. The emergence of these two states are most simply seen from the

central-field approximation [38] where the valence electron is taken to be independent

during calculations of the energy of the atom. An image of the energy levels of lithium

is shown in Figure 3.2.

Within the D-line are two distinct sub-groups, the D1- and D2-lines, that

result from the intrinsic spin of the electron interacting with the orbital angular mo-

mentum. This interaction, aptly named the spin-orbit coupling, divides the D-lines

into the two subgroups and is termed the fine structure. The interaction Hamiltonian

can be written as

ĤS-O = (gs − 1)
~2

2m2
ec

2

(
1

r

∂φ(r)

∂r

)
Ŝ · L̂ (3.3)
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Figure 3.2: Energy level diagram of 7Li ground and excited states. We optically
pump on the 7Li D1 transition to shift atoms from the F = 1 state into the F=2
state or vice versa. Frequency shifts are from [39].
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where me is the mass of the electron, c is the speed of light, ~ is the reduced Planck’s

constant, r is the radial distance from the center of the atom, φ(r) is the poten-

tial produced by the nucleus and inner electrons, and L̂ and Ŝ are the orbital and

spin angular momentum operators, respectively. In the absence of strong electric or

magnetic fields it is convenient to define the total angular momentum operator

Ĵ = L̂ + Ŝ , (3.4)

where the magnitude of J may only take values in integral steps in the range of

|L− S| ≤ J ≤ |L+ S| . (3.5)

This interaction leads to the splitting of the 2P excited state into the 2P1/2

and 2P3/2 states which correspond to the D1- and D2-line respectively. We are using

the Russell-Sanders notation to denote the states of S, L, and J as 2S+1LJ where L

historically is converted from L = 0, 1, 2, . . . to S, P, D, etc.[40, 38]. These two states

are split by roughly 10.05 GHz [41].

Earlier it was alluded that there is further substructure within the D-lines.

This hyperfine structure is a result of the nucleus being not necessarily spherically

symmetric and thus has an associated nuclear spin. This interaction is much weaker

than spin-orbit coupling resulting in a much smaller splitting of the states. The

7Li ground state bifurcates into two groups of states separated by 803.5 MHz. The

operator for this interaction can be written [40] as

ĤHF = −µ̂ · B̂(0) +
1

6
e
∑
α,β

Q̂αβ
∂2φ(0)

∂xα∂xβ
, (3.6)
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where µ̂ and Q̂ are the nuclear magnetic dipole moment and nuclear electric quadrupole

moment operators respectively. The magnetic field operator B̂ and electric poten-

tial φ are evaluated at the location of the nucleus. The first term is entirely analogous

to the spin-orbit interaction. The latter term will only contribute in the case of a non-

spherically symmetric electric field present in the 2P1/2 and 2P3/2 states. However,

for the 2S1/2 with an orbital angular momentum L = 0 the term will be 0.

3.2 Zeeman splitting

The Zeeman splitting of the 7Li ground state in the presence of a magnetic

field is shown in Figure 3.3. The magnetic field interacts with the total electronic and

nuclear magnetic moments of the 2S1/2 state of the lithium atom and the interaction

energy can be captured by the Hamiltonian

ĤZ = − (µ̂J + µ̂I) · ~B (3.7)

where µ̂J and µ̂I represent the total electronic and nuclear magnetic moments, respec-

tively. The total magnetic moment µ̂ can be expressed in terms of the electronic Ĵ

and nuclear Î spins by

µ̂ = µ̂J + µ̂I =
µB
~

(
gJ Ĵ + gI Î

)
(3.8)

where µB is the Bohr magneton, ~ is the reduced Plank’s constant, and gJ and gI

represent the electronic and nuclear Landé-g factors.

To fully describe the Zeeman splitting we include hyperfine interactions whose

Hamiltonian can be represented by the sum of the dipole and quadrupole contribu-
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tions as

Ĥhfs = hAJ Î · Ĵ + hBJ
6(Î · Ĵ)2 + 3(Î · Ĵ)− 2I(I + 1)J(J + 1)

2I(2I − 1)2J(2J − 1)
, (3.9)

where AJ and BJ are the dipole and quadrupole constants respectively dependent

on the given state [42, 43, 44]. For the case of J = 1/2, as with ground state 7Li , the

quadrupole constant is identically zero leaving hyperfine splitting dependent only on

the dipole contribution. Generally, the electric quadrupole interaction is present for

states I, J ≥ 1. With this simplification the total Hamiltonian can be rewritten as

Ĥ = Ĥhfs + ĤZ = hAJ Î · Ĵ−
µB
~

(
gJ Ĵ + gI Î

)
·B . (3.10)

For the case of the 2S1/2 ground state of 7Li where J = 1/2 and I = 3/2, diagonal-

ization of the Hamiltonian will yield the following expression

E(F±,mF )

∆Ehfs
= − 1

2(2I + 1)
−
(

mF

gJ/gI − 1

)
x± 1

2

√
1 +

(
4mF

2I + 1

)
x+ x2 (3.11)

known as the Breit-Rabi formula [45] for the energies as a function of the dimension-

less parameter

x =
(gJ − gI)µBB

∆Ehfs
. (3.12)

The value for the hyperfine splitting ∆Ehfs can be found by diagonalizing Equa-

tion 3.9 and calculating the difference between the eigenvalues. In the case of the

2S1/2 state, diagonalizing produces

Ehfs =
1

2
AJ (F (F + 1)− I(I + 1)− J(J + 1)) (3.13)

and upon differencing

∆Ehfs = AJF . (3.14)
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Plotting this formula in Figure 3.3 shows that fourmF states within the F=2 manifold

of the 7Li 2S1/2 state monotonically increase in energy with increasing magnetic field

strength. We term these atoms as ‘low-field-seeking’ (LFS) as they will travel against

the gradient of magnetic fields to minimize their energy. Conversely, atoms in the

F=1 manifold of the 2S1/2 state find high fields to be energetically favorable and are

hence termed ‘high-field-seeking’ (HFS). It is important to acknowledge in the case

of 7Li one mF state in the F=2 manifold (mF = 0) is always high-field-seeking and

must be avoided when applying forces with magnetic field gradients. Atoms in the

F=2 manifold have the natural tendency to react to forces in opposite directions.

This makes them poorly suited for magnetic manipulation in states of mixed mF .

From Figure 3.3 we see that at sufficiently large magnetic fields the nuclear

spin decouples from Ĵ and the Hamiltonian can be more simply expressed as

Ĥ = ĤZ = −µB
~

(gJ Ĵ + gI Îz) ·B (3.15)

= −µB
~

(gJ Ĵz + gI Îz)B (3.16)

where the Landé g-factor gJ is given by

gj = gL
J(J + 1)− S(S + 1) + L(L+ 1)

2J(J + 1)
+ gS

J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)

= 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

J(J + 1)
. (3.17)

In the last step values gL ≈ 1 and gS ≈ 2 have been used. The nuclear contribution

of the Landé g-factor gI in gJ is sufficiently small at the level of 0.1% and can be

safely neglected. Using Equation 3.16 to find the energy, we obtain

∆E = 〈Hz〉 = µBgJmJB , (3.18)
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which will be sufficient for the field strengths accessible in our experiment.

3.3 Optical transitions

In order to prepare the quantum state of lithium in our experiment we use

lasers tuned to specific frequencies to drive optical transitions on the D1 line. We

provide a brief overview showing how these states are connected through electric

dipole interactions with near resonant light that follows the discussions presented

in [13, 44, 46].

The strength of a transition from the state |(JI), F,mF 〉 to the excited state

|(J ′I ′), F ′,m′F 〉 is proportional to the square of the electric dipole matrix element

and is given by

|〈(J ′I ′), F ′,m′F | d̂ |(JI), F,mF 〉|2 . (3.19)

Evaluating this integral is relatively complicated, however, usage of the Wigner-

Eckart theorem can greatly aid in simplifying the calculations. Recasting the electric

dipole operator into an irreducible rank-1 spherical tensor, the previous expression

can be written now as

D2 = |〈(J ′I ′), F ′,m′F | d1q |(JI), F,mF 〉|2 , (3.20)

where q is dictated by the selection rules defined by the polarization of light (q =

0 and ±1 correspond to linear and circular polarizations, respectively). Through
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repeated application of the Wigner-Eckart theorem we obtain

D2 = |〈(J ′I ′), F ′,m′F || d ||(JI), F,mF 〉|2

× (2J + 1)(2J ′ + 1)(2F + 1)(2F ′ + 1)

×
{
L′ J ′ S
J L 1

}2{
J ′ F ′ I
F J 1

}2(
F 1 F ′

MF q −M ′
F

)2

(3.21)

where the terms in the curly braces and parentheses are the 6-j and 3-j symbols

respectively and the first term is the reduced matrix element that is determined by

radial contributions of the atoms’ wavefunctions. If we just consider the D1 transition

from the ground state |22S1/2, F,mF 〉 and excited state |22P1/2, F
′,m′F 〉 of lithium,

we can simplify Equation 3.21 to

D2 = 〈22P1/2, F
′,m′F ||d||22S1/2, F,mF 〉

× 4(2F + 1)(2F ′ + 1)

× 1

6

{
1/2 F ′ 3/2
F 1/2 1

}2(
F 1 F ′

MF q −M ′
F

)2

. (3.22)

A summary of the relative strengths for the 7Li D1 transition is shown in

Figure 3.4 originating from the F=1 and F=2 manifolds of the 2S1/2 state. Through

polarization of the laser we can optically pump the atoms into different mF sublevels.

Rather than pumping the atoms into a single mF state for our experiment, we are

only concerned with avoiding the mF = −2 state of the 2S1/2 F=2 ground state.

As mentioned in section 3.2, only the mF = −2 state is high-field-seeking unlike

the rest of the F=2 manifold that is low-field-seeking. For this reason, we only kick

and measure atoms in the F=1 manifold. The stages of state preparation that are

described later in section 5.3 are simply navigating around this quirk of lithium.
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Figure 3.4: Summary of the transition strengths for 7Li D1 line from both F=1 and
F=2 states. The green lines indicate linear polarization and the red and blue lines
represent σ+ and σ− circular polarizations respectively. Linewidths represent the
relative strength of the transitions.

Returning to Equation 3.21 we can express the spontaneous emission rate [47]

for a particular transition (F ′,m′)→ (F,m) as

A(F ′,m′ → F,m) =
4ω2

3πε0~c3
|〈(J ′I ′), F ′,m′F | d1q |(JI), F,mF 〉|2 . (3.23)

where ω is the average transition frequency due to the smallness of the hyperfine

splitting and c is the speed of light. By summing over all the transitions of a given

line we will obtain the Einstein A coefficient for the line,

AD1 =
∑
F,m

A(F ′,m′ → F,m) , (3.24)

which is inversely related to the natural lifetime τ of the transition. Lithium has a

relatively small lifetime of 27.102 ns which implies that it also has a large linewidth

of 5.872 MHz. Finally, some related optical properties of 7Li are summarized in

Table 3.3.
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D-line Property Symbol Value Reference

D1,D2
Lifetime τ 27.102 ns [48]
Natural Linewidth Γ 5.8724 MHz [48]

D1
Wavelength (vacuum) λ 670.976 655 nm [39]
Frequency ν 446.800 132 THz [39]

D2
Wavelength (vacuum) λ 670.961 560 nm [39]
Frequency ν 446.810 184 THz [39]

Table 3.3: Optical properties of the 7Li D-line transitions.
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Chapter 4

Kicking with Electromagnetic Coils

4.1 Electromagnets

At this point we have formulated the approach to make a one-dimensional kick

in Chapter 1 and will now discuss the tools used to generate our pulsed magnetic

biases and kicks. The pulsed electromagnetic coil, our main tool, is used to generate

the large magnetic fields necessary to kick and deflect the lithium atoms. Starting

from the differential form of Ampère’s law,

∇×B = µ0 J , (4.1)

where J is the current density and µ0 is the permeability of free space, we recast the

equation into its integral form, known as the Biot-Savart law [49],

B =
µ0

4π

∫
J(x′)× (x− x′)

|x− x′|3
d3x′ (4.2)

where the current density J(x′) is present at position x′. For coils of wire it is more

useful to rewrite the equation as

B =
µ0I

4π

∫
C

dl× (x− l)

|x− l|3
(4.3)

where the current density J(x′) in the wire has been reduced to a constant current

I pointing in direction dl and (x − l) is the displacement vector pointing from the
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Figure 4.1: Illustration of the geometry of a current loop in cylindrical coordinates.

infinitesimal length element of the current path to the measurement point. From

this equation, the magnetic field from an arbitrary current path can be calculated.

The magnetic field created from a single coil loop of radius R at position zcoil = A

is given by the following formulas in cylindrical coordinates [50]:

Bz =
µ0I

2π

1

[(R + ρ)2 + (z − A)2]1/2

[
K(k2) +

R2 − ρ2 − (z − A)2

(R− ρ)2 + (z − A)2
E(k2)

]
,

Bρ =
µ0I

2πρ

z − A
[(R + ρ)2 + (z − A)2]1/2

[
−K(k2) +

R2 + ρ2 + (z − A)2

(R− ρ)2 + (z − A)2
E(k2)

]
,

where

k2 =
4Rρ

(R + ρ)2 + (z − A)2

and K(k2) and E(k2) are the complete elliptic integrals of first and second kind

correspondingly. Figure 4.1 illustrates the arrangement described by these equations.
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g0 1
g1 3A
g2 3 (4A2 −R2)/2
g3 5A(4A2 − 3R2)/2
g4 15 (R4 − 12A2R2 + 8A4)/8

Table 4.1: First few expansion coefficients gn(A,R). Further expressions can be
found in [50].

For the case of a point along the axis of the coil (ρ = 0) the z-component can be

simplified to

Bz(ρ = 0) =
µ0IR

2

2 [R2 + (A− z)2]3/2
. (4.4)

Near the center of the coil we can express the magnetic field along the z-axis as a

Taylor expansion in powers of z [50] as

Bz =
µ0IR

2

2 [R2 + A2]3/2

∑
n

gn(A,R)

(
z

R2 + A2

)n
, (4.5)

where the first few homogeneous polynomials gn(A,R) are listed in Table 4.1.

4.2 A simple implementation of bias and kicking coils

Unlike the Stern-Gerlach experiment, where both terms of

Bt = B +B0 k̂ (4.6)

are fixed by the physical dimensions and magnetizations of the permanent magnets,

we have direct control over the first term using anti-Helmholtz coil configuration

and the second term using a Helmholtz coil configuration. In an anti-Helmholtz coil

pair currents circulate in opposite directions, whereas, in a Helmholtz configuration

currents flow in the same direction.
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4.2.1 Helmholtz coils

As a first step let us consider the simplest case of two coils of the same

radius R located at distance 2A from each other. If the current in the two coils flow

in the same direction then only the even terms of Equation 4.5 will be present in the

magnetic field expansion:

BHH
z (z) =

µ0IR
2

[R2 + A2]3/2

[
1 + 3(4A2 −R2)

z2

(A2 +R2)2

+ 15(R4 − 12A2R2 + 8A4)
z4

(A2 +R2)4
+O(z6)

]
(4.7)

=
8µ0I

5
√

5R

[
1− 144

125

z4

R4

]
+O(z6) for A=R/2 . (4.8)

An ideal Helmholtz coil is one such that the field near the center of the coils is most

homogeneous. Our goal then is to eliminate z2 dependence by an appropriate choice

of coil separation which is found to be AH = R/2 through simple algebra. A plot of

the total magnetic field along the z-axis for this configuration is shown in Figure 4.2

with the two underlying single-coil fields from which it is composed.

4.2.2 Anti-Helmholtz coils

The currents in an anti-Helmholtz pair will flow in opposing directions and

will only have odd non-zero terms in its expansion:

BAH
z (z) =

µ0IR
2

[R2 + A2]3/2

[
3A

z

R2 + A2
+ 5A(4A2 − 3R2)

z3

(R2 + A2)3
+O(z5)

]
(4.9)

=
48

49

√
3

7

µ0 I

R2
z +O(z5) for A =

√
3R

2
. (4.10)

Depending on the application, there are two coil separations that can provide in-

teresting gradient characteristics. First, by setting A = R/2 we can maximize the
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Figure 4.2: Magnetic field along the coil axis for a Helmholtz and anti-Helmholtz
configuration respectively. Solid lines are the sum of the two single-coil fields (dashed)
with radii R0 at locations indicated by the dotted vertical lines. Bz has units of
µ0I/(2πR0).

gradient. This would allow us to achieve larger kicks but at the cost of gradient uni-

formity. Instead, we want to eliminate the z3 term so that the field will be linearly

proportional to z such that the gradient will be more uniform over space. As we are

more interested in suppressing the heating of the beam, a small reduction in gradient

strength is acceptable in order to improve kick uniformity. Setting the third order

term to zero and solving yields AAH =
√

3R/2. The resulting optimized magnetic

field along the z-axis is again shown in Figure 4.2. Examining the slopes of the total

fields in Figure 4.2 near the center of coils in a region of 0.25R0 to 0.35R0 show that

the Helmholtz pair introduces a negligible gradient while the anti-Helmholtz pair

provides a constant gradient.

41



-0
.6 R

0

-0
.3 R

0 0.
0.3
R0

0.6
R0

-0.6 R0

-0.3 R0

0.

0.3 R0

0.6 R0

-0
.6 R

0

-0
.3 R

0

0. 0.3
R0

0.6
R0

-0.6 R0

-0.3 R0

0.

0.3 R0

0.6 R0

Position [z]

P
o
si
ti
o
n
[ρ
]

Bz(ρ,z)

3.24 3.42 3.60 3.78 3.96 4.14 4.32 4.50 4.68 4.86

-0
.6 R

0

-0
.3 R

0 0.
0.3
R0

0.6
R0

-0.6 R0

-0.3 R0

0.

0.3 R0

0.6 R0

-0
.6 R

0

-0
.3 R

0

0. 0.3
R0

0.6
R0

-0.6 R0

-0.3 R0

0.

0.3 R0

0.6 R0

Position [z]
P
o
si
ti
o
n
[ρ
]

∇z|B(ρ,z)|

3.24 3.42 3.60 3.78 3.96 4.14 4.32 4.50 4.68 4.86

Figure 4.3: Magnetic field for a Helmholtz configuration (left) and the gradient
of the magnetic field for an anti-Helmholtz configuration (right) in both ρ and z
coordinates. Solid white lines indicate the threshold of a 10% variation. Bz scale has
units of µ0I/(2πR0) and ∇z|B| scale has units of µ0I/(2πR

2
0).

4.2.3 Helmholtz variations in two dimensions

The preceding plots in Figure 4.2 focused solely on the axial z dependence of

the fields and gradients; however, we can extend this discussion to include the radial ρ

dependence. Shown in Figure 4.3 is the magnetic field and gradient of the Helmholtz

and anti-Helmholtz configuration respectively as a function of both z and ρ. The

solid white contours delineate the region where the variation of field and gradient

is less than 10%. Atomic clouds in this region (∼ 0.5R0) will experience a uniform

force.

Before preceding, it is also useful to note that a single coil offset from the

origin like those that compose the Helmholtz or anti-Helmholtz configurations can
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Figure 4.4: Creating a one-dimensional kick with a combination of Helmholtz and
anti-Helmholtz coils. The current of the Helmholtz pair is held fixed. As the bias
field is increased the zero-point crossing of the field is progressively pulled farther
to the left. This causes the atoms to polarize and align in a single direction while
maintaining a uniform gradient near the center of the coils. This is the regime of a
one-dimensional kick.

also function as a bias or gradient. The key difference is that a single coil will couple

these two effects together and will also result in a smaller region of uniformity. This

will ultimately be the manner in which we create a bias in the actual coils due to

experimental factors discussed later.

4.2.4 The combination of a bias and a gradient

Assuming that the placement of the two sets of coils are at the optimal dis-

tances as mentioned, it is useful to discuss the conceptual idea of the one-dimensional

kick with these fields and gradients. Shown in Figure 4.4 is the field along the z-axis

with the kicking current held at a fixed value. The bias currents are allowed to vary
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Figure 4.5: Dimensions of bias and kicking electromagnetic coils. The two outer
larger coils are used for creating the magnetic bias. The inner coil pair function in a
anti-Helmholtz configuration. All coils use 20 AWG Kapton-coated copper and are
composed of 11 windings, 6 on the inside and 5 on the outside.

from being completely disabled (IHH = 0) to twice that of the anti-Helmholtz cur-

rents (2IAH). Increasing the bias strength effectively shifts the zero-point crossing

progressively outside the center of the coils. This is important as atoms in a single

atomic state will precess around the direction of the total magnetic field. In the

absence of a bias atoms will experience a uniform force proportional to ∇|B| (see

Chapter 1). However, due to the sign inversion at z = 0 the atoms will be separated

due to the magnetic moments aligning in opposing directions. By increasing the

Helmholtz bias fields to be greater than that of the anti-Helmholtz fields, we enter

the regime of one-dimensionality where the atoms are aligned or polarized in the

same direction by the bias field while experiencing a uniform force.

4.3 Experiment coils

Coil dimensions shown in Figure 4.5 were chosen to satisfy the competing

criteria of maximizing field uniformity along the propagation axis of the atomic beam
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Figure 4.6: Bias field configuration for coils. Colors indicate the direction of current
flow. Red and blue are clockwise and anti-clockwise respectively and white represents
no current. The kick is generated by the anti-Helmholtz configuration shown on the
left. Due to mutual inductances we avoid using a Helmholtz configuration.

while minimizing the inductance of the coils which lengthens the pulse duration. As

a result the general coil geometry was elongated and deformed into a rectangular

shape in order to better operate on a moving beam of atoms. The smaller, 43.0 mm

× 20.3 mm, inner coils function as a pulsed anti-Helmholtz pair to create a strong

magnetic field gradient. The larger, 50.0 mm × 28.4 mm, outer coils are pulsed

individually to provide a magnetic bias of either sign. All four coils consist of two

layers of Kapton coated 20 AWG wire with the inner and outer layers having 6 and

5 windings respectively. The inner anti-Helmholtz pair is separated by 26.1 mm and

the outer is separated by 28.5 mm.

For any particular experiment three coils are pulsed. In theory the bias coils

should be operated in a Helmholtz configuration in order to produce a large uniform
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field near the coil centers. However, in practice, mutual inductances between adjacent

inner and outer coils lead to strong coupling of the currents. This makes calibration

of the current flow through each coil both involved and difficult. To illustrate this

difficulty refer to Figure 4.6 where the four coils are drawn in a series of operational

conditions. The colors denote the flow of current with white being zero current and

red and blue indicating clockwise or anti-clockwise flow respectively. The inner anti-

Helmholtz coils are operated in the same way across all of the current configurations

shown.

The mutual inductance of two coils follows the form

M = k
√
L1L2 (4.11)

where L1,2 are the inductances of the individual coils and k is the coupling coefficient.

The coupling coefficient can take any value in the range from 0 to 1 for magnetically

isolated and tightly coupled coils respectively. For sake of analysis we will assume

that our coils are ideal tightly coupled coils (k = 1). In the case of the Helmholtz

configuration shown along the upper row of Figure 4.6, the inductance of the coils

will have an increased and decreased value for currents aligned and anti-aligned

respectively. At low to moderate biases the coupling of the coils (specifically the anti-

aligned coils) cause the currents to deviate from expected isolated behavior and would

require careful calibration. Rather than attempting to calibrate all of the currents

for this complicated arrangement, we instead simplify the system to the single coil

bias configuration. As previously mentioned, the single coil will introduce its own

additional gradient; however, this effect was not a concern in our demonstration

experiment.
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4.3.1 Coil holders

Early proof-of-concept prototypes consisted of simple coils wound to specific

dimensions that were liberally epoxied to a piece of nylon or Delrin. Initial tests

revealed that the magnetic forces generated by the inner and outer coils (∼1 T) were

sufficient over prolonged operation to damage the unrestrained epoxy, separate the

coils, and tear the insulating Kapton on the copper wires.

To combat such degradation, we designed the final coil holders, shown in

Figure 4.7 to provide structure on all sides. The two coil holders and the retaining

spacer are held together with nylon screws and clamped around the 0.75 in stainless

steel vacuum chamber. Plastic is chosen for all structural parts to avoid eddy currents

that limit magnetic fields at the center of the coils. The inner holder and retaining

spacer are made of Delrin while the outer holder is printed out of PLA plastic1.

Small holes seen in Figure 4.7 on the top of the retaining spacer and the flat

surface of the inner coil holder are included in the design to facilitate the injection

of epoxy2 into the coil gaps. The epoxy is added to prevent any motion of the coils

during a pulse. It is mixed and loaded into a syringe and then injected through a

gauge 15 needle into the gaps colored in green shown in Figure 4.8. Due to the high

viscosity of the epoxy a pneumatic piston is used to apply a constant force on the

syringe. Holes are plugged with wooden applicator rods to prevent leakage of the

epoxy during curing.

1The outer holder was 3D printed on a LulzBot TAZ 6 at The Foundary in the Fine Arts library
due to lead times associated with the physics machine shop.

2We used an epoxy from Epoxies, Etc. (50-3150 FR). We chose this epoxy for its high thermal
conductivity.
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Figure 4.7: Exploded view of the coil holder. The holder is composed of two identical
units of three major pieces. Coils are wound on separate mandrels and inserted into
each other for precise alignment. In order to kick along both transverse orthogonal
axes, the coil holder is capable of rotating around the vacuum chamber to realign
the coils relative to the measurement system.

Figure 4.8: Coils are cemented inside the Delrin holder via epoxy injected through
small holes shown via a section view.
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4.4 Switching the coils

We operate our coils in a pulsed fashion to produce sizable magnetic fields and

minimize the interaction time with the beam. Creating such current pulses that can

be switched on and off within seconds is difficult in practice. The Maxwell-Faraday

equation,

∇× E = −∂B

∂t
, (4.12)

shows that a changing magnetic field will generate a corresponding electric field.

Applying this to a coil of wire leads to Lenz’s law,

E = −N dΦ

dt
, (4.13)

where E is the electromotive force, N is the number of windings in the coil, and Φ

is the magnetic flux which passes through the coil. Switching a coil will produce a

potential that induces a current that opposes changes in the magnetic field. This

effect is not limited only to the wires of circuits, but also surrounding materials where

eddy currents form in bulk materials such as metal heat sinks that might be near

the coils.

4.4.1 Underdamped oscillator

Abrupt changes in current cause large unwanted voltage spikes that are very

taxing to circuitry and coils. As a result, we avoid using circuits that directly dump

currents to ground through a switch. Instead we exploit the properties of an RLC

oscillator circuit to create more graceful switching characteristics in combination

with a thyristor (see subsection 4.4.2). Ignoring the thyristor for now, we derive the
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Figure 4.9: RLC circuit.

expected current in the RLC circuit. Using Kirchhoff’s voltage law on the series

circuit shown in Figure 4.9 we obtain

d2

dt2
I(t) + 2α

d

dt
I(t) + ω2

0I(t) = 0 (4.14)

where the attenuation is defined as α = R/2L and the resonant frequency ω0 =

1/
√
LC. The damping parameter

ζ =
α

ω0

=
R

2

√
C

L
, (4.15)

is useful in separating the equation into the different regimes of operation. For

ζ < 1 the circuit behaves as an underdamped oscillator which exhibits a current that

oscillates under a decreasing exponential envelope given by

I(t) = B1e
αt cos(ωdt) +B2e

αt cos(ωdt) (4.16)

where ωd =
√
ω2
0 − α2 = ω0

√
1− ζ2 is the modified oscillation frequency and B1,2 are

constants determined by the initial conditions of the circuit. Setting the inductor

voltage and loop current to V0 and I = 0 respectively at t=0 we can express the

current flow as

I(t) =
V0
Lωd

e−αt sin(ωdt) (4.17)
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Coil Inductance [µH] Resistance [mΩ]
Small Coil #1 7.7 56.3
Small Coil #2 7.6 56.8
Large Coil #1 10.2 63.7
Large Coil #2 10.2 67.8

Table 4.2: Electrical parameters of the coils.

For ζ � 1 the circuit behaves almost like that of an undamped oscillator.

4.4.2 Coil pulse circuitry

As described above, the large inductive spikes associated with switching large

current sources represent a serious design consideration. The values for inductances

and resistances of our coils are summarized in Table 4.2. Overall our circuit imple-

ments an underdamped RLC oscillator whose current is gently clamped after one

half-cycle. A schematic of the circuit is shown in Figure 4.11 and is separated into

two main sections - charging and discharging. At the top a 1 kV variable power

supply3 provides the current used to charge a 100 µF capacitor bank. Charging is

initiated by closing the integrated gate bipolar transistor4 (IGBT) and connecting it

to the capacitor bank. The parallel flyback diode5 protects the IGBT by preventing

any voltage spikes generated from switching events from inducing reverse currents

within the IGBT. Charging occurs on the order of 10 ms.

Once charged the IGBT is opened to disconnect the top branch from the

bottom to leave essentially an RLC circuit with an additional component known as

3Analog Modules, Inc. Isolated Capacitor Charging Power Supply model 5724
4IXYS (now Littlefuse) IXGK120N120A3
5IXYS (now Littlefuse) DSEP 30-12A
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Figure 4.10: Plot of calculated currents representative of our coils and circuits. The
red trace shows a normal under damped circuit with R, L, C values of 56.3Ω, 7.7 µH,
100µF, respectively. The blue curve represents the behavior expected from the
thyristor clamping the reverse current.

a thyristor6 in series. The thyristor is a bistable switch that conducts upon receiving

a current trigger on its gate. Even after the trigger is removed, current will continue

to flow until the device becomes reverse biased. In our circuit, charge stored in the

capacitor bank is dumped to ground upon activation of the thyristor. The current

passes through our coil and creates a magnetic field. After one half-cycle, the current

is clamped to prevent multiple underdamped oscillations from ‘ringing’ in the coil.

Furthermore, another flyback diode7 is placed in parallel with the thyristor to absorb

any reverse current.

On-board power for the IGBT and thyristor is supplied by two DC-DC con-

6IXYS (now Littlefuse) CLA80E1200HF
7IXYS (now Littlefuse) DSEP12-12B
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Figure 4.11: Schematic of the coil pulse circuitry. The circuit is divided into two
main functions: charging and discharging. Charging is accomplished by connecting
a 1 kV power supply to a capacitor bank. After charging, the IGBT is disconnected
and a thyristor is activated that depletes the capacitor bank. The triggers for both
the IGBT and thyristor are isolated from digital electronics via optocouplers.

53



verters8 with 0.1 µF and 100 µF capacitors placed across both the inputs and out-

puts. The capacitors help provide a steady supply of current across a broad range

of frequencies during large current draws. Both the IGBT and thyristor receive 5 V

transistor - transistor logic (TTL) pulses from LabVIEW data acquisition (DAQ)

hardware to control the precise timing of switching events. The circuit filters these

pulses before passing the signal to an isolating optocoupler9. The optocoupler physi-

cally divides the low voltage digital circuitry from the high current switches through

an optical transmission of the signal within the circuit element.

Each of the coils has a dedicated charging and discharging circuit with a

corresponding capacitor bank, however, all four circuit boards share the 1 kV power

supply. Charging is managed by selectively connecting each board temporarily via

the charging IGBTs through automation software in LabVIEW. Furthermore, during

each charging cycle the power supply can be configured to a different voltage to

independently set the voltage on each capacitor bank. Configuring for non-equal

voltages enables access to different gradient and bias fields generated by each coil.

All the circuits sans the high voltage power supply are packaged into a stan-

dard 19 in rack mount unit10 (see Figure 4.12). Power for the low voltage circuitry

(optocouplers) is supplied by a set of -5, 5, and 15 V switching power supplies11

and distributed via bus bars to the four boards. One important detail necessary to

8Motien 1 W unregulated DC-DC converter model VL-1209SH6
9Both optocouplers in the circuit are made by On Semiconductor. The IGBT uses a F0D3120

optocoupler and the thyristor uses a F0D8321 optocoupler.
10Hammond Manufacturing provides many boxing options and replacement components for most

of the product lines they sell. Useful for modifying existing equipment.
11TDK-Lambda LS series
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Figure 4.12: Interior of the coil pulse box. The capacitor bank slides out to reveal
power supplies and the switching boards. The three switching power supplies are
supplied by external wall voltage and distribute power to four switching boards (two
boards are stacked below the other two).
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prevent coil switching from interfering with the digital circuitry is to reference the

power supplies connected to the thyristor optocoupler to the cathode of the thyris-

tor. It is also important to ensure that the DC voltage reference is not connected to

the AC wall ground. This would create a ground loop that would couple to other

equipment connected to the wall. Dumping a large current to ground will effectively

shift the reference point temporarily and cause interference in peripheral equipment

in addition to spurious digital triggers.

4.5 Simulation of fields

Calibration of the currents for the coils are carried out with Hall-effect current

transducers12. Each lead to a coil has its own transducer as seen in Figure 4.13.

Since the transducers are only rated to 200 A, all capacitor voltages were scaled

proportionally downward to operate within the maximum current range. Scaling

these voltages up to typical operational conditions (600 V on kicking coils and a max

of 800 V on bias coils) we can use these currents as inputs into a theoretical model

that calculates the fields. Shown in Figure 4.14 is a plot of the gradient zero-point

crossing as a function of the voltage allowing us to gauge the linearity of the bias

behavior. Furthermore, the norm of the magnetic field along the symmetry planes is

summarized in Figure 4.15. The fields exhibit the same qualitative behavior seen in

section 4.2. In the absence of a bias the anti-Helmholtz field generates a field gradient

that is directed outward from the center of the coils. Upon applying a strong bias

field the gradient becomes directional and uniform once the zero-crossing of the total

12Tamura L31S200S05FS Current Sensor
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Figure 4.13: Current transducers surround the wires for each coil to monitor the
current during pulses. All transducers are powered by a power supply not shown.

field has been shifted outside the center of the coils.
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Figure 4.14: Total field zero-point crossing as a function of bias voltage. Behavior is
roughly linear albeit with a slight offset towards positive biases.
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Figure 4.15: Simulation of the magnetic fields in the final coil design. Contour
plots of the norm of the magnetic field are overlaid by a vector plot indicating the
direction and strength of the magnetic force on high-field-seeking atoms. Axes are
aligned such that the kick is along the z-axis and the atomic beam propagates along
the x-axis. The dotted yellow region represents the extent of the lithium cloud at the
peak of the magnetic kick. (a, b) Only the anti-Helmholtz coils are active at 1500 A
producing a symmetric field and force profile about the axis of propagation. (c, d)
An additional 1800 A bias coil has been included which shifts the field zero-point off
the propagation axis and weakens xy-dispersion. The result is a uniform force in the
region of the atoms.
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Chapter 5

Experiment Overview

5.1 Even-Lavie cryogenic valve

All supersonic helium beams in this work are produced from a valve developed

by Nachun Lavie and Uzi Even1. Shown in Figure 5.1, the valve consists of a conical

100µm opening that flares near the edges and a magnetic plunger that is actuated

by a solenoid electromagnet. This arrangement is capable of producing gas pulses as

short as 8µs. Due to the dynamics detailed in Chapter 2 and careful engineering [51],

the resulting beam is both brighter and colder than comparable effusive expansions

at the expense of an increased forward velocity.

A schematic of the Even-Lavie valve is shown in Figure 5.1. High pressure,

high purity helium gas (200-400 psi) is introduced on the left through a 1/16 in

stainless steel tube. The pressurized gas is contained within a thin-walled cylinder

that is compressed between two Kapton gaskets to create a high-pressure seal. Within

the tube the valve is opened via a precision machined plunger that is actuated by a

solenoidal electromagnet. During a 12 - 17 A current pulse the plunger is retracted

by ∼100µm from a ∼2 T field to release a brief puff of gas with pulse widths ranging

from 8 µs to 50µs. After the pulse, the plunger is forced closed through a combination

1https://sites.google.com/site/evenlavievalve/
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Figure 5.1: Cross section of the Even-Lavie cyrogenic valve [33]: (1) Stainless steel
gas inlet tube (1/16 in); (2) Tightening spring (180 N) and pressure relief valve; (3)
Kapton foil gasket (rear, 125µm); (4) Ceramic (Zirconia) guiding ferrule; (5) Return
spring (Stainless steel alloy); (6) Thin-walled pressure vessel (stainless steel); (7)
reciprocating plunger (magnetic stainless steel alloy); (8) Kapton insulated copper
coil; (9) Permedure magnetic shield and field concentrator; (10) Ceramic (zirconia)
guiding ferrule; (11) Kapton foil gasket (front, 125µm; (12) Front flange and valve
body (copper); (13) Conical shape expansion nozzle (hardened stainless steel).
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Figure 5.2: Cooling the supersonic nozzle with a liquid nitrogen dewar (left) and a
helium cyrocooler (right).

of gas pressure and a compression spring.

We avoid operating the nozzle at room temperature for two reasons: (1) the

velocity of the gas will be extraordinarily fast in comparison to that of an effusive

beam and (2) the fast-moving gas will also be hotter in the moving frame (see Fig-

ure 2.2). As detailed in Chapter 2, we can counteract these undesirable effects by

cryogenically cooling the nozzle and thus the gas in the valve. Initially, cooling was

accomplished by mounting the nozzle to a cold finger on a liquid nitrogen dewar (seen

in Figure 5.2 on the left). The dewar was capable of lowering the nozzle temperature

to ∼100 K. Parallel experiments demanded more stringent velocity requirements and
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forced a transition from the dewar to a helium cyrocooler2 (shown in Figure 5.2 on

the right) to further reduce temperatures to as low as 12 K.

At these coolest temperatures, however, helium begins to exhibit cluster

growth that limits the cooling effects expected from adiabatic expansion [33]. For

this reason we wrapped the cold head of the cryocooler with a flexible Kapton planar

heater3 and heated it via a power supply with roughly 10 W to raise the temperature

to 18 K. Below 30 K Type-K thermocouples become unreliable without calibration,

so we substituted our thermocouple for a silicon diode4 to gain both speed and im-

proved reliability. The diode was mounted just above the nozzle on the sloped back

side of the clamp seen in Figure 5.2. Thermal noise in the wires was mitigated by

wrapping the leads of the diode around the base of the cold head before interfacing

with the electrical feedthroughs.

Operationally, pushing towards frigid temperatures requires care with regards

to gas line management and materials. Contamination in the tubing can not only

cause degradation of the beam but also outright operational failure of the nozzle.

While operating at 100 K with liquid nitrogen, it was sufficient to use a high purity

cylinder and to pulse the nozzle every few seconds to prevent the plunger from

’sticking’ from the condensation of contaminants such as water. Lower temperatures,

however, demand more care and attention. It is essential to evacuate the gas line with

a pump before cooling. Freezing of various impurities ultimately lead to irreversible

2Sumitomo CH-210 10 K cryocooler
3Omega Kapton Insulated Flexible Heaters
4Lake Shore Cryotronics DT-670 silicon diode operated with a Model 211 Temperature Monitor
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Figure 5.3: Example of a gasket failure. This gasket (item (11) in Figure 5.1) sealed
the front of the nozzle as noted by the slightly visible circular indentation near the
opening. The deformation seen on the lower right prevented the plunger of the nozzle
from creating a flush seal against the Kapton thus causing a leak. This is an example
of poor quality Kapton.

damage of the gaskets requiring disassembly5 of the nozzle for gasket replacement.

Furthermore, due to variations in Kapton manufacture, it is possible for certain lots

of gaskets to degrade prematurely in a matter of hours. See Figure 5.3 for an example

of a failure representative of poor quality Kapton. High quality Kapton will create

seals easily lasting for months and hundreds of thousands of pulses.

5.2 Atomic source

Over the evolution of our experiment and its many goals, we used a variety

of sources and means to introduce atomic lithium into our supersonic beam. Initial

entrainment investigations were conducted through ablation of lithium from a solid

5Manual to the Even-Lavie nozzle
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target with a pulsed laser6. In a parallel project whose goal was to push the limits

of entrainment, we abandoned laser ablation due to poor flux and lithium clustering

and instead adopted an effusive lithium source where we heat a sample of lithium to

produce a flux via the vapor pressure.

5.2.1 Directional oven

Incorporating lessons learned from previous oven designs, we transitioned

from non-standard custom parts to standard ConFlat (CF) flange dimensions for

simplicity and versatility. Furthermore, we chose to place all heating elements within

vacuum in order to avoid excessive insulation and cooling that is required with out-

of-vacuum heating.

The reservoir dimensions were set to an inner diameter of 1.6 in and an in-

ner length of 3.2 in for a total volume of 6.4 in3 to accommodate the lithium rods7

(equivalent to roughly 50 g of lithium). The oven reservoir terminates with a stan-

dard 1.33 in CF flange pattern for mounting of different exit apertures. The base of

the oven has five fins with through-holes for easy mounting.

5.2.2 Directional aperture

Rather than use a simple singular opening for the output of the oven, we

were inspired by directional oven designs [52] that minimize the atom flux off the

directional axis of the oven. These designs are based on the early work by King and

6Continuum Minilite II (now Amplitude Laser)
7ESPI metals lithium rods
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Figure 5.4: Oven reservoir for lithium. The source consists of a stainless steel reser-
voir with a helical groove on the outer surface. Heater wires are wound in the groove
and held fixed with a copper clamp. The opening of the reservoir terminates with a
standard tapped and bored 1.33 in CF flange.

Zacharias [53] who constructed a matrix of channels through stacking of corrugated

nickel foils. By choosing the channel diameter such that the mean free path is

greater than the channel length, then the angular spread of the flux is determined

by the channel’s aspect ratio [54]. Due to the large aspect ratios of the channels,

flux is diminished in comparison to that of a pinhole of the same channel diameter.

Atoms that enter the tube are highly likely to exit at the entrance. The channel will

preferentially allow only the highly directional atoms to escape. By making a large

matrix of these channels we can counteract the loss of atoms due to the geometry.

Our design, shown in Figure 5.5, uses 2485 pieces8 of 33 RW gauge (200 µm

diameter) hypodermic tubing sourced from MicroGroup cut to 5 mm lengths. We

hexagonally packed the tubing into a triangular groove cut into the center of a

8Feel free to count. The resolution is sufficient.
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Figure 5.5: Image of the assembled nozzle of the directional oven. Within the trian-
gular cutout are 2485 capillaries in a hexagonal packing arrangement and are fixed
with a small clamp.

1.33 in custom CF flange to facilitate optimal circle packing. The physics machine

shop used an electrical discharge machine to create the sharp 60 deg groove. The

tubing is held in place via small wedge which applies pressure via two #4-40 set

screws (see Figure 5.6 for more details). We opted to use nuts rather than tapping

the stainless steel as previous experience showed that screws tend to gall and become

stuck after many heating cycles. This design allows removal of the screws with an

end mill machine in the event of a worst-case situation. Furthermore, we coated

the screws with a boron nitride aerosol for lubrication and galling prevention. Boron

nitride can both withstand temperatures up to 850 ◦C and suffers minimal outgassing

in vacuum.
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Figure 5.6: Design of the direction nozzle for the reservoir. The nozzle is composed
entirely of stainless steel and also features a 1.33 in CF flange at the base for interface
to the reservoir. Similar to the reservoir, a helical groove is used to wrap a heater wire
around the nozzle for independent control of nozzle temperature. Copper clamps hold
the heater wire fixed. The nozzle is typically kept 50 ◦C greater the temperature of the
reservoir in order to prevent clogging. The triangular cutout in the center is filled
with hexagonally packed microtubes used to preferentially select more directional
atom flux. The tubes are held fixed with a small block that applies pressure via two
#4-40 set screws. A small groove on the face of the nozzle allows for secure mounting
of a Type-K thermocouple for temperature monitoring.
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Figure 5.7: Fully assembled oven. The oven mounts on 5 stainless steel standoffs
affixed to a 4.63 in CF flange. Ceramic screws and alumina spacers provide ther-
mal isolation for all directly connected structural supports. A copper heat shield
surrounds the oven to prevent radiative loss.
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Alignment of the tubing was problematic9 for several reasons. We fabricate

a triangular mandrel to plug the hole and create a working surface to support the

tubes during assembly. Tilting the nozzle slightly upward and using gravity allows

the tubing to self-align for the initial ∼ 20 layers. After completing the initial layers

the risk of dropping tubes into the vacant recess is an issue. This risk is alleviated

somewhat by clumping many of the tubes with surface tension after sonication in

water. Circle packing defects and vacancies are easily fixed with dental probes, and

non-magnetic10 tweezers.

Both the reservoir and nozzle of the directional oven are heated with flexible

heater cables11. The two cables, composed of a resistive wire embedded within

magnesium oxide, are enclosed in Inconel 600 sheaths that are wrapped around the

diameters of the reservoir and nozzle of the oven. Both cables terminate with a 1.33 in

CF flange oriented such that the knife edge is facing the electrical connections of the

heater. This choice allowed us to remove the oven from the chamber for maintenance

and lithium replenishment without unwinding the heater assembly.

5.3 Beam line and optical pumping

Shown in Figure 5.8 is a cross-sectional outline of the beam line inside the

vacuum system. Included is everything from the production of helium and lithium

to the magnetic kick at the coils. The Even-Lavie nozzle is mounted on a cyrocooler

9Substitute any of the following: annoying, aggravating, infuriating.
10All tubing is Type 304 stainless steel, so it is very easy to pull out roughly 2000 tubes by

accident... twice.
11AeroRod heaters were sourced from ARi Industries Inc.
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Figure 5.8: The helium beam originates from a supersonic nozzle (i) cooled by a
10 K cryocooler (ii). The helium beam passes through a cloud of lithium created by
a directional oven (iii) and entrains lithium into the flow. To prevent heating of the
nozzle from the oven, copper shields surround both the oven and the nozzle with the
latter also being cooled by a separate 60 K high-load base of the cryocooler. The
helium and lithium mixture passes through a 5 mm skimmer (iv) and enter a region
of optical pumping (v) for state selection. Finally, the beam is kicked by the set of
coils in (vi) before continuing towards detection (not shown).
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Figure 5.9: State preparation of the lithium cloud before entering the magnetic coils.
Initially the beam is a mix of both 2S1/2 F = 1 and 2 states. The beam passes
through a 5 mm skimmer (i) before encountering a laser (ii) tuned to remove all
atoms in the beam from the F=1 ground state. The second laser (iii) then pulses
15µs to transfer a longitudinal slice of the beam back into the F=1 state. Tagging
only a narrow slice of atoms will reduce the effects of field inhomogeneities present
near the wings of the electromagnets. Finally, the beam is spatially cropped with a
5 mm pinhole (iv) machined into a CF gasket.

and suspended along the central axis of a 10 in stainless steel CF chamber. Below

the axis of the nozzle and slightly offset (6.25 cm) along the propagation axis, the

oven is oriented facing upward to dose passing helium. Heat from the 550 ◦C oven is

managed by copper heat shields on both the oven and cryocooler. A 5 mm skimmer12

is placed 17.5 cm away from the nozzle face relative to its knife edge to select the cold

interior of the supersonic beam while also providing the added benefit of differential

pumping.

The lithium passes through a series of CF crosses where both the spatial and

magnetic states of the atoms are prepared. This preparation process is illustrated in

Figure 5.9. The lithium produced by the oven occupies all the mF sublevels in the

2S1/2 ground state. We first use a sheet of laser light tuned to the F = 1 → F ′ = 2

12Beam Dynamics model 50.8 nickel skimmer
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D1 transition to empty and clean the high-field-seeking 2S1/2 F=1 state from the

entire spatial extent of the lithium beam. The second laser sheet, tuned to the

F = 2 → F ′ = 1, is then flashed for 15 µs to transfer a thin slice of the expanding

lithium back into the 2S1/2 F=1 ground state. Laser light for both optical pumping

stages was set above the saturation intensity of lithium at 7.59 mW/cm2. Finally

before entering the magnetic coils, the diameter is further culled by a 5 mm pinhole

situated 44 cm away from the nozzle face. The pinhole was machined from a blank

2.75 in copper gasket.

5.4 Laser system

Our system consists of two commercial grating-stabilized external-cavity diode

lasers13 (ECDLs) and a tapered amplifier14. A general outline of the optical elements

used to stabilize and select the frequencies is shown in Figure 5.10. The separate

ECDL (spectroscopy laser) is used solely as a frequency reference, while the other

laser is used to seed the tapered amplifier for power amplification. Much of the

locking electronics and optics were based on the designs from previous experiments

within the lab and further details can be found in other dissertations [46, 55, 56].

We stabilize the frequency of our spectroscopy laser through frequency mod-

ulation spectroscopy using 7Li D-lines as a reference [57]. Output from the spec-

troscopy laser is elevated before passing through a pair of anamorphic prisms to

correct for astigmatism in the beam shape. The beam passes through an optical

13Toptica Photonics DL pro and a seed laser within the TA pro
14Toptica Photonics TA pro

73

https://www.toptica.com/products/tunable-diode-lasers/ecdl-dfb-lasers/dl-pro/
https://www.toptica.com/products/tunable-diode-lasers/amplified-lasers/ta-pro/


Figure 5.10: Laser system used for state preparation and measurements. (A) The
spectroscopy laser double-passes through a lithium vapor cell in order to stabilize
the frequency to the 7Li D1 line. (B) We superimpose the spectroscopy and seed
lasers onto a photodiode to generate a beat frequency. The frequency is then used
to create an error signal that determines the frequency offset between the two lasers.
(C) A 95 MHz acousto-optic modulator (AOM) shifts the frequency to F=1→F’=2
D1 transition. (D) A 420 MHz AOM is double-passed to produce the ∼800 MHz
offset necessary to necessary to reach the F=2→F’=2 D1 transition. The RF source
of both AOMs can be switched to pulse the laser.

74



isolator15 to prevent reflections from subsequent optics from re-entering the ECDL

and causing feedback in the laser diode. A half-wave plate and a polarizing beam-

splitter cube are used to split the laser into two branches. One branch is allowed

to double-pass through a lithium vapor cell before being collected on a photodiode

that is used to feedback and stabilize the spectroscopy laser. The diverted branch

is merged with the seed laser generated within the tapered amplifier and is collected

by another photodiode. The output of this photodiode is sent through a series of

electronics to extract a beat frequency that can be used to lock the frequency of the

tapered amplifier relative to the spectroscopy laser.

The lithium vapor cell consists of a long stainless steel tube with two 2.75 in

CF viewports at each end and has a section in the middle that protrudes outward

where lithium (natural abundance) is contained. Heating this section in excess of

400 ◦C will produce a lithium vapor pressure that will absorb a sufficient portion of

light to be detectable on our photodiode. To prevent coating of the end viewports

with lithium we initially evacuate the vapor cell of all gas through a roughing pump

at room temperature and introduce argon into the cell to the level of 35 mTorr. This

small amount of buffer gas is sufficient to prevent lithium from traversing the length

of tube to the viewports.

To lock our laser to a fixed transition in the 7Li spectra we create an error

signal through the addition of frequency sidebands by adding a modulation to the

diode current. We use a photodiode to monitor the spectroscopy laser intensity after

15Conoptics Inc. 712B Optical Isolator
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Figure 5.11: Error signals generated for stabilization of the spectroscopy and seed
lasers. (A) The spectroscopy laser error signal after double-passing through a lithium
vapor cell. Zero-crossings correspond to features of the 7Li D1 line. (B) We generate a
beat frequency by overlaying the spectroscopy laser and seed laser onto a photodiode.
This frequency is then mixed with a known frequency from a voltage-controlled
oscillator. The mixed output is split and recombined after one branch of the output
is passed through a fixed phase delay. This results in an error signal whose zero-
crossings provide particular detunings between the spectroscopy and seed lasers.

double passing through the vapor cell. Initially, we sweep the central frequency of

the laser by applying a triangular waveform on the piezo to adjust the cavity length

in order to identify a specific locking frequency. The photodiode signal is passed

through a series of electronics detailed in [46, 55] and the resulting error signal

is shown in Figure 5.11. The zero-crossings of this error signal correspond to the

spectral features of the 7Li D1-line.

After stabilizing the spectroscopy laser to a transition, we then reference

the seed laser of the tapered amplifier to the spectroscopy laser via a frequency

offset lock by superimposing the two lasers onto a photodiode [58]. Similar to the

spectroscopy laser we apply a voltage ramp on the piezo of the seed laser to produce
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a beat frequency on the photodiode. We then mix the beat frequency with the

output of a voltage-controlled oscillator (VCO) through a frequency mixer. This

output is split and recombined on a phase detector after one branch passes through

a cable of a known delay length. This recombination will produce an error output

as seen in Figure 5.11 where the zero-crossings correspond to the detunings between

the spectroscopy laser and the seed laser. Each of these detunings can be shifted

through adjustment of the voltage applied on the VCO allowing for precise targeting

of frequency.

The output of the tapered amplifier is first passed through an optical isolator

to again reduce feedback and protect the amplifier chip. The laser passes through

a series of polarizing beam splitters that direct the light to other optics for parallel

experiments. For this experiment the λ/2 waveplates were set to avoid loss on these

branches during operation. At the final polarizing beam splitter cube the laser is

split into two branches. Locking the tapered amplifier will introduce a frequency

offset away from the 7Li D1 transition. We address this by shifting the frequencies of

the two branches with two different acousto-optic modulators16 (AOM). The upper

branch in Figure 5.10 simply shifts the frequency back onto the F = 1 → F ′ = 1

resonance before coupling into a fiber. In order to address the large (803.5 MHz)

offset of the 7Li 2S1/2 ground state, we double-pass through a 420 MHz AOM to

double the frequency shift accumulated before coupling into a fiber. Both AOMs can

be adjusted in the range of ±20 MHz with the RF-source controllers to target the

specific transitions shown in Figure 3.2.

16IntraAction models ATM-951A1 and ATM-420
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5.5 Fluorescence

An illustration of the detection portion of the vacuum system is shown in

Figure 5.12. After the coils are pulsed, lithium is allowed to travel through the

vacuum system in order to let the deflection and spreading of the lithium cloud

evolve in time. Lithium propagates either 40 cm or 58.5 cm before it arrives at the

first detection chamber or second detection chamber respectively. A narrow 2 mm

laser beam crosses orthogonal to the beam line through a 2.75 in or 4.5 in vacuum

cross respectively. The laser is tuned to the F = 1→ F ′ = 2 D1 transition in order

to excite the thin slice of tagged lithium atoms mentioned in section 5.3. The rest

of the cloud remains in the 2S1/2 F = 2 state and will not interact with the laser nor

measurement of lithium. The excited atoms will spontaneously decay and produce

a fluorescence signal proportional to the total number of atoms crossing the beam.

As the atoms travel through the laser we will also receive temporal information of

the atom number in what is commonly referred to as a time-of-flight measurement.

We collect a portion of the spontaneously emitted light with a lens after leaving

the vacuum chamber. This light is focused onto a fast, highly sensitive avalanche

photodiode17 (APD).

In order to extract more spatial information of the beam the laser light is

configured to translate perpendicular to the laser and beam line. We accomplish

this by reflecting the excitation laser off of a mirror mounted on a linear slide as-

sembly18. Translation is automated through stepper motors driven by commercial

17Hamamatsu C5460-01 APD module
18Velmex Motorized UniSlide Assembly
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Figure 5.12: Beam line of fluorescence detection. After the lithium is kicked by the
coils (i) it is allowed to propagate freely for either 40 cm or 58.5 cm before entering
the first or second detection chamber (ii) respectively. Laser light excites the lithium
passing through and is collected by avalanche photodiodes (not shown) mounted
above the vacuum crosses. Automated linear motion mounts (iii) translate the mir-
rors vertically to reflect the laser through different sections of the lithium beam to
produce time-of-flight line cuts of fluorescence. A bellows (iv) separates the detec-
tion chambers from kicking coils. Both detection chambers are mounted on a large
homebuilt translation stage capable of shifting both chambers back 5 cm.
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stepper controllers19 and controlled via LabVIEW.

5.6 Summary of apparatus

Figure 5.13 summarizes the entire apparatus. The beam line begins at the

top of the image and travels downward. A supersonic helium beam is produced

from an Even-Lavie nozzle and entrains lithium emitted from an effusive oven. The

helium and lithium mixture passes through a skimmer before the lithium magnetic

state is prepared with two lasers. The coils pulse and deflect the beam which is

then measured at two different locations via fluorescence collected on an avalanche

photodiode. The final chamber consists of an assortment of diagnostic equipment

not relevant to this experiment.

19Velmex produces the VXM series of stepper controllers with drivers for many programming
languages.
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Figure 5.13: Complete experimental setup. The beam line consists of a supersonic
helium source (i), a lithium entrainment oven (ii), optical pumping to select the
atomic state (iii), and the bias and kicking coils (iv). A flex bellows (v) is included
to allow adjustment of the fluorescence lasers (vi). The final chamber (vii) includes
a Langmuir-Taylor surface ionization detector and residual gas analyzer for further
diagnostics.
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Chapter 6

Measurements

6.1 Imaging lithium

We accumulate a series of many fluorescence time-of-flight measurements to

characterize the lithium cloud’s expansion and deflection. These measurements are

compiled together to form a two-dimensional time-of-flight density image similar

to that of Figure 6.1. By rotating the coils 90 deg around the vacuum chamber

we can capture the effects of the other axis and produce a full three-dimensional

snapshot (one temporal and two spatial components) of the lithium for a given kick

configuration. After propagating nearly 50 cm from the 5 mm pinhole the lithium

cloud has a transverse extent typically of ∼ 1 cm and temporal range from 50µs to

300µs depending upon the state preparation.

6.2 Optical tagging

Using the acousto-optic modulators detailed in Chapter 5 we can indepen-

dently toggle the laser light on and off by adding or removing the RF source. We

exploit this aspect during the second optical pumping stage during state preparation

in order to highlight a thin longitudinal slice (see Figure 5.9) of the lithium cloud

for fluorescence imaging along the propagation axis. Tagging proved to be a useful
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Figure 6.1: False color time-of-flight fluorescence images of lithium. The image is
composed of 61 time-of-flight traces at laser positions spaced 0.025 in apart.

means of selecting the comparatively colder interior longitudinal temperatures of the

beam. Three different tagging lengths are summarized in Figure 6.2 along with their

corresponding full width at half maximum (FWHM) values. All measurements that

follow use a 15 µs pulse length to maximize the fluorescence current signal on the

APD without tagging a large portion of the cloud.

6.3 Extracting beam parameters

After the aforementioned optimizations of the previous section, we systemat-

ically extract the beam properties from the time-of-flight density plots. Fitting the
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Figure 6.2: Time-of-flight plots of different optical tagging lengths. The laser was set
on the center of the lithium cloud and tagged at the peak signal. Optimizing the tag-
ging length is a balance between achieving a sufficiently large signal while minimizing
the effects of field inhomogeneities from affecting the cloud during propagation. The
FWHM width for each signal is indicated.
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data to a two-dimensional normal distribution

f(t, x) = A exp

[
−1

2

(
(t− t0)2

σ2
t

+
(x− x0)2

σ2
x

)]
, (6.1)

we extract, specifically, four parameters of the beam: the temporal cloud center t0,

the temporal spread radius σt, the spatial cloud center x0, and spatial spread radius

σx. An example of such an analysis is shown in Figure 6.3 on a freely propagating

beam with the various fitting parameters summarized for each imaging location. As

expected, the beam expands both in time and space as it propagates from the first

detection location to the second along the beam axis. The closer measurement at

40 cm was compiled from 41 TOF traces whereas the farther 58.5 cm measurement

combines 63 traces. The different number of traces reflects the optical access pro-

vided by the 2.75 in and 4.5 in viewports of the first and second detection chambers

respectively (see Figure 5.12). The range of laser positions in the first chamber is

restricted as a result.

6.4 Two-point measurements: kicks and thermal spreading

We start first with the more straightforward of the two measurements - the

kick. The kick is simply a measure of the strength of the impulse imparted by the

pulsed magnetic coils. Unconcerned with the overall shape of the cloud at this stage,

we calculate the velocity of the center of the lithium cloud from the fitted normal

distribution. Each kick measurement is referenced to a freely propagating beam of

similar conditions. Being only specifically interested in the change in velocity ∆v in

both transverse directions created by the coils, we use the two imaging locations in
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Figure 6.3: Extracting beam parameters from fluorescence time-of-flight images of
lithium. Fluorescence data was taken 40 cm and 58.5 cm away from the center of
the kicking coils. A two-dimensional normal distribution is fitted to the data to
extract the various parameters summarized in the upper left of each image. The
white ellipses superimposed on the data represent the 1-sigma radii of the fits using
the extracted parameters σt and σz from each image according to Equation 6.1.
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our experiment at 40 cm and 58.5 cm to calculate ∆v via a simple difference quotient

∆v =
z2 − z1
t2 − t1

(6.2)

where the indices indicate the two measurement positions.

The second measurement, the thermal spreading, is more involved and hides

some complexity. We know from Chapter 2 that the beam will expand following

σ(t) =
√
σ2
0 + v2tht

2 , (6.3)

where the σ0 and σ(t) represent the Gaussian width of the beam initially and after

time t respectively. In principle, if the beam has been allowed to expand across a

long distance, the initial size will cease to be a dominant factor and growth in σ will

be proportional to vtht. Under such conditions a similar difference quotient would be

sufficient to extract the thermal velocity. To be conservative, we instead make use

of Equation 6.4

vth =

√
kBT

m
=

√
σ2
2 − σ2

1

t22 − t21
,

to extract the thermal velocity where kB is the Boltzmann constant, m is the mass

of lithium atom, T is the transverse temperature, and σ1,2 are the transverse widths

of the lithium cloud at times t1,2 since passing the skimmer.

6.5 Adding pulsed magnetic fields

Using the current pulsing circuitry of Chapter 4 we systemically apply differ-

ent currents to the electromagnet coils as the lithium travels through the coil centers.
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While all of the circuit components are rated to handle at least 1 kV, we limit volt-

ages to a max of 800 V in order to preserve the coils and circuitry. Furthermore,

during initial stress testing at 1 kV, equipment in the vicinity of the pulsing box

was coupling to the capacitor bank as it was charged and discharged. This led to

sporadic triggering of LabVIEW and misfiring of the supersonic beam.

In order to examine the qualitative behavior of the kick from a purely disper-

sive force to the regime of one-dimensionality we allow the bias field to vary from

being completely disabled to exceeding that of the anti-Helmholtz gradient fields.

For this reason, we set the anti-Helmholtz kicking coils to fixed pulsing voltages at

600 V. This allows us the freedom to select bias voltages ranging from 0 to 800 V,

thus satisfying the aforementioned desired conditions.

To illustrate the qualitative effects of the two kicking regimes, refer first to

Figure 6.4. This shows a time-of-flight density plot of the lithium cloud measured

at the far detector to highlight any expansion and/or deflection ∆z from the freely

expanding reference beam. The left plot is of the freely expanding beam, whereas

the right plot shows the current conditions where only the kicking coils are activated.

For ease of comparison the centroid of the freely expanding lithium cloud is projected

onto the kick as a red dot. The blue dot similarly indicates the centroid of the kicked

beam. The most apparent difference between the two is the noticeable increase in

transverse radius (1.7 mm) that is expected from a purely dispersive gradient field.

Though slight, there is small displacement of centroid that could be the result of

either coil or beam misalignment.

The regime of one-dimensionality plotted in Figure 6.5 reflects the same ex-
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Figure 6.4: Demonstration of a dispersive kick with both bias coils disabled and
the kicking anti-Helmholtz coil pair both set at 600 V. The plots contrast a freely
propagating cloud to one undergoing a dispersive kick, revealing a sizable increase
in the transverse radius σz.

perimental conditions as the dispersive kick with the following exception; the bias coil

is now set at its maximum of 800 V to produce the strongest deflection ∆z capable in

our current system. Under these conditions we see a strong deflection (blue dot) of

∼3.5 mm. The distinguishing characteristic besides the deflection is that transverse

heating has been suppressed as seen by the smaller σz value.

Rather than analyze each density individually, we process and compile all of

the fitting parameters into values for the kick ∆v and the spreading ∆vth. We focus

specifically on the changes in v and vth to highlight the effects our coils introduce

on the beam. Measurements were taken from 0 to 800 V in increments of 100 V

to adequately see the transitions from a dispersive kick to one-dimensionality. Fur-

thermore, measurements for both orthogonal transverse directions were collected via
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Figure 6.5: Demonstration of one-dimensional kick with one bias coil set to 800 V
and the kicking anti-Helmholtz coil pair set both to 600 V. The left plot contrasts
a freely propagating beam to a one-dimensional kick on the right revealing a sizable
transverse shift ∆z while reducing heating as seen in Figure 6.4.

rotation of the kicking coils 90 deg around the beam axis (see Chapter 5). Each data

point accumulates three separate measurements to produce an estimate on the error

of our measurement. These results are summarized in Figure 6.6.

We focus first on the z-axis (rightmost column) where the kicking coils are

aligned. The preceding qualitative discussion for the limiting cases is still valid. As

expected, no noticeable kick is observed at zero bias, but as the magnitude of the bias

voltage is increased, stronger kicks are observed along the z-axis. A maximum kick of

∆v = 2.5±0.3(−2.3±0.3) m/s at +800(-800) V bias has been achieved, constrained

only by the limits of the electronics. The change in thermal velocity peaks around

low biases at 1.2± 0.1 m/s and tapers off at high biases to 0.5± 0.1 m/s at +800 V

and 0.6± 0.1 m/s at -800 V.
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Figure 6.6: Transverse kick strength and change in thermal velocity for the two
orthogonal directions are shown as a function of bias coil voltage. Note the vertical
axis of two lower ∆vth plots are the same scale, however the values are offset.
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These results are consistent with the conceptual idea that the bias field shifts

the zero-crossing of the total magnetic field (see Figure 4.15). The magnetic moments

of the individual atoms align along the field lines, which sets the directionality of the

applied force F = µ∇|B|. The magnitude of the total magnetic field only influences

the strength of the kick.

Shifting focus to the other orthogonal transverse axis (y-axis) shows no appar-

ent dependence on the bias field for either ∆v or ∆vth. Kicks along this axis remain

small over all voltages not exceeding 0.5 m/s. Likewise, thermal velocity changes are

negligible with no apparent structure.

Worth noting, due to the bias configuration employed, the kick will continue

to grow with increasing bias field. This side-effect is a result of the creation of a bias

field from that of a single coil. Unlike a Helmholtz field, where total magnetic field

is constant, a single offset coil will always have an associated magnetic gradient that

will impart its own kick to the cloud. If a uniform field was substituted, we would

expect kicks to eventually saturate to some fixed value corresponding to the gradient

of the anti-Helmholtz pair.

Everything discussed so far is a result of direct spatial measurements obtained

via laser scans and their corresponding fluorescence values. However, given that

all the data are time-of-flight measurements, we still have access to the temporal

shape of the beam as it passes through the laser. Using the distances between the

measurement points (18.5 cm) and the time-of-arrival of the freely propagating beams

we can calculate the velocity of the lithium beam (498± 0.3 m/s) and determine the

spatial extent of the cloud along the propagation axis. We can repeat the kick
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Figure 6.7: Dependence of the change in velocity and thermal velocity of the lithium
atoms on bias voltages in three dimensions. Data along the x-axis is extracted
from the temporal time-of-arrival of the lithium beam. The changes in velocity are
reported relative to the beam with no magnetic fields present. The kicking gradient
is oriented along the z-axis.

and heating analyses as previously done on the transverse axes but now on the

propagation x-axis. The full three-dimensional results are summarized in Figure 6.7.

Considering the aggregate data, a kick will only impart a net force on atoms

along the axis of the anti-Helmholtz pair (z-axis) without influencing trajectories

on the other axes. Similarly in the presence of a high bias field, heating is greatly

suppressed along axes orthogonal to the kick. Further reduction in heating may be

possible by replacing the single bias coils in our setup with either larger coils or

implementation of a calibrated Helmholtz field. Both options would improve the

uniformity of the bias field.
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6.6 Correcting temperature drifts

In producing the results of Figure 6.7 we addressed the stability of our nozzle

over time. Shown in Figure 6.8 is a plot of the data taken during an entire day.

We supply a constant heat load to the cyrocooler through ohmic heating in order to

maintain the nozzle at a fixed temperature. Despite setting the nozzle to roughly

18 K, long time-scale temperature fluctuations manifest throughout the course of

each day. These fluctuations in nozzle temperature are a result of variations in

the University’s chilled 4.5 ◦C water supply. This water supply is used to cool the

helium compressor unit that, in turn, cools the nozzle. This resulting drift in nozzle

temperature correlates to the drift in supersonic beam forward velocity as indicated

by the arrival times of the Figure 6.8.

Since the deviation in arrival times of the atoms is small in comparison to

propagation time, we can remove the correlation through a linear fit of arrival times

as a function the temperature variation of the nozzle. Results of this analysis are

shown in Figure 6.9 on the same data set. This was an essential step in order to

produce error bars consistent with the variation seen in the data.

As an aside, there are minor features present in our data not addressed in

the previous discussions. Some of this can be seen through comparison of data in

Figure 6.8 and Figure 6.9. When taking the fluorescence images, we typically scan

linearly through the various bias voltages. This sort of behavior is representative of

the data that was taken after 19:00 that day. There is a clear dependence on the

arrival time even after removing the temperature correlations (seen from examination

of a complete bias scan indicated by the colors of Figure 6.8). A possible cause of
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Figure 6.8: Temperature drift of the supersonic nozzle over time. Arrival times
shown in the upper plot are averages of the data collected for each bias voltage.
Colors indicate the grouping of complete bias voltage scans of different data sets.
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Figure 6.9: Removing time-dependent correlations from the temperature drift data
with a linear fit. The corrected data points (bold points) are superimposed on top
of the original data.
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this correlation is a slight misalignment of the lithium beam axis to the coil axes

or inhomogeneities of the beam. This correlation isn’t apparent for data sets taken

earlier in the day because bias scans were taken non-sequentially.
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Chapter 7

The Adiabatic Decelerator and Magneto Optical

Cooling

With the successful production of a one-dimensional kick, the experiment is

being pushed beyond deflection of atomic beams to ultimate goal of actually stop-

ping, trapping, and cooling lithium for future cold atom experiments. Though not

consequential to this work, a large portion of the author’s time was spent on an-

other experiment developing a method of slowing atoms to rest through an adiabatic

decelerator.

Traditional cold atom experiments use a Zeeman slower (see Figure 7.1) de-

veloped to slow atoms directly from an effusive source via a combination of spatially

varying magnetic fields and resonant light [38, 44, 46, 55]. The magnetic field shifts

the fast moving atoms’ resonant frequencies through the Zeeman effect enabling the

laser to repeatedly excite the atoms on a closed cycling transition. Through tens of

thousands of cycles, the spontaneously emitted photons provide minute momentum

kicks (8.474 cm/(s · photon) for lithium) to slow the beam to rest. This technique,

pioneered by William Phillips [59, 60], has seen widespread use and was a key step

towards the experimental realization of Bose-Einstein condensations (BEC). Since

the Zeeman slower requires a closed cycling transition, that is, one that excites and
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Figure 7.1: Example of a Zeeman slower used in the Bagnato group [61]. A large
magnetic field near the left is sufficient to bring the Doppler-shifted fast-moving
atoms into resonance with the laser that runs coaxial with the slower. To stay in
resonance as the atoms scatter photons and slow, the magnetic field is reduced along
the length of the slower.

returns the atom to the original state, only a few elements on the periodic table

are amenable to this technique. Complex level structures require multiple lasers at

different frequencies to address all the decay channels. Furthermore, atoms are only

slowed along the axis of propagation without any confinement for the transverse

velocities while within the slower.

Our group has worked on various means of addressing these limitations across

several experiments [62]. Specifically, we focused on creating a general slowing

method via the atomic coilgun. Rather than rely on the momentum transfer from

many photons to an atom, the coilgun instead uses magnetic fields to slow atoms by

creating a series of magnetic potential barriers that remove the directional kinetic

99



energy of the atoms. This technique is inherently more efficient with photons as only

a few are needed to transfer the atom into a magnetic state. More importantly, the

method is applicable to most atoms on the periodic table since they are either mag-

netic in their ground state or can be optically pumped into a magnetic metastable

state [63]. Furthermore, the technique can even be extended to molecules [64]. De-

spite the generality of the method, the coilgun, like the Zeeman slower, still suffers

from a transverse loss of atoms.

The adiabatic decelerator [65, 66] aims to address this loss and is the evolution

of several iterations of the atomic coilgun. Rather than using single coils to generate

magnetic potential barriers, the adiabatic decelerator consists of a series of anti-

Helmholtz coil pairs that trap and decelerate low-field-seeking atoms to rest. The

trap effectively eliminates the transverse loss of atoms and has been recently built

and demonstrated in the lab [67].

Our decelerator, shown in Figure 7.2, consists of 480 interleaved anti-Helmholtz

coil pairs. By applying timed sinusoidal current pulses generated from circuitry simi-

lar to that in subsection 4.4.2 we can effectively shift the trap minimum from one coil

pair to the next. By progressively increasing the pulse duration for each subsequent

coil pair we can effectively create a decelerating trap. Our group recently showed

the deceleration of lithium entrained in a supersonic beam of helium from an initial

velocity of 450 m/s to a final velocity of 50 m/s. A summary of the results are shown

in Figure 7.3 and additional optimization analyses can be found in [67].

Having successfully slowed lithium atoms we now aim to trap the atoms in a

magneto-optical trap (MOT) in order to demonstrate the new technique of magneto-
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Figure 7.2: Design of the adiabatic decelerator. The decelerator is roughly two meters
in length and consists 480 interleaved 1 cm anti-Helmholtz coil pairs that surround a
0.375 in vacuum tube. A series of ten sets of configurable underdamped RLC circuit
boards (five for each side) are shared between all the coils. Rotating through each
board set provides time for the other four boards to recharge back to ∼ 500 V.
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Figure 7.3: Lithium slowing results from the adiabatic decelerator. The initial speed
of the lithium beam is 450 m/s. The slower is capable of decelerating the lithium
atoms to near rest. Loss of atoms are likely a side effect of the fluorescence measure-
ment occurring several centimeters after the end of the slower after which atoms are
allowed to disperse somewhat at the slower velocities. Image is provided courtesy of
Yu Lu [67].
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optical (MOP) cooling [17] in six-dimensional phase space. Using internal-state opti-

cal pumping and stimulated optical transitions combined with one-dimensional kicks

we intend to efficiently compress phase space resulting in an ultracold and dense

cloud of atoms. The conceptual idea is illustrated in Figure 7.4 for one spatial di-

mension. Assume a cloud of atoms ∼ 2 mm that are all in a high-field-seeking state

(F=1 for lithium) as indicated by the blue points. We can optically pump half of

the spatial distribution into the low-field-seeking state (F=2 for lithium). Using a

one-dimensional kick we can apply a force to the two halves in opposite directions in

order to merge them. The one-dimensional kick is a necessary ingredient to prevent

any heating of the gas (as indicated by the velocity distribution). Once merged a

kick of opposite direction is applied to freeze the atoms in their positions. Finally,

optical pumping is used to reinitialize all atoms back into the high-field-seeking state

in order to repeat the process. This process can not only be applied to all spatial

dimensions, but can also be adapted to operate on the velocity components of phase

space in a similar manner [17].
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Figure 7.4: Demonstration of the conceptual idea behind magneto-optical cooling.
Blue and orange indicate high- and low-field-seeking atoms respectively. (A) Initial
distribution of HFS atoms. (B) Half of the spatial distribution is optically pumped
into the LFS state. (C) A one-dimensional kick forces the two halves to merge. (D)
After the two halves optimally overlap, a reverse kick is a applied to freeze and stop
the translational motion. (E) Finally, the entire cloud is reinitialized the HFS state
with another cycle of optical pumping. This process can be then repeated to achieve
geometric increases in density.
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