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Owing to their small size, advanced position detection possibilities, and

accurate theoretical description, optically trapped microspheres have become a

paradigmatic system for myriad sensing applications. This dissertation reports

on two air-based experiments that leverage the unique properties of optically-

trapped microspheres as measurement tools: inertial mass sensing and sound

detection.

We measure the mass of a microsphere in three ways. Careful error anal-

ysis allows quantitative comparison between our method and others appearing

in the recent literature. As figures of merit, we focus on accuracy, precision,

and speed. We find that monitoring the variance of the microsphere’s veloc-

ity degree of freedom while undergoing equilibrium Brownian motion enables

measurement of our microsphere’s ∼25 pg mass with 4.3% accuracy and 1.6%

precision across 14 vastly different trapping laser powers and using 10× less
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data than our most accurate (3.2%) and precise (0.9%) method. The more ac-

curate method is a calibration step that must always be performed initially, but

the microsphere’s velocity variance may subsequently be monitored, thereby

elevating mass to a dynamic measurement variable.

For sound detection, we develop a model for the sensitivity of a mi-

crosphere’s velocity to an external acoustic perturbation. In this case, the

microsphere’s Brownian motion is a noise source that must be overcome for a

signal to be detectable. We validate our method by comparing measurements

of pure-tone bursts between our system and two state-of-the-art, commercially-

available acoustic sensors. We then demonstrate the microsphere’s advantage

in measuring high-frequency-content signals using impulsive sounds generated

by laser ablation. We resolve an acoustic rise time of 1 µs on the same signal

that our high-bandwidth microphone measures a 7 µs rise time. At the same

time, our higher bandwidth resolves a nearly 3× larger peak pressure than the

microphone.

This dissertation builds toward these two experimental results by first

contextualizing them in a non-technical historical review. Key technical back-

ground is then developed pedagogically, followed by details of the trapping and

detection apparatus. After the experiments are reported, we conclude with a

summary of the results and an outlook on the future of optically trapped

microspheres as sensitive detectors.
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Chapter 1

Introduction

In this work, the system under study is a small glass sphere with a di-

ameter roughly 1/10th the width of a human hair. The microsphere is optically

trapped in air using two tightly-focused laser beams, as pictured in Figure 1.1.

The position of the microsphere can be measured with a sub-nanometer spa-

tial resolution and microsecond temporal resolution. Novel air-based sensing

applications are enabled by such high-speed and sensitive position measure-

ments.

Figure 1.1: An optically trapped microsphere. Two counter-propagating laser
beams are focused to a common point by lenses, seen here in their metal
housing. A glass slide coated in microspheres just above the trap center is
vibrated to affect their release. Once trapped, the microsphere scatters light
making it appear much larger than it is.
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Because the microsphere is held in air, it is coupled to an environment

and therefore sensitive to environmental perturbations. Even in the absence

of airflow, the air’s temperature drives the microsphere in perpetual Brow-

nian motion, like that simulated in Figure 1.2. Upon magnifying Brownian

motion in space and time, one finds yet more randomness — Brownian mo-

tion appears scale-free and fractal. Upon further magnification, the random

motion becomes a smooth trajectory. Our system is capable of resolving the

smooth trajectory of Brownian motion and can, in this sense, be thought of

as a microscope in both space and time.

We explore our system’s ability to make two qualitatively-distinct an-

alytic measurements. First, we monitor the microsphere’s Brownian motion

to deduce its mass. In the second, we monitor the microsphere’s motion when

the surrounding air is driven by sound. Brownian motion is present in both

mass and sound measurements but its role as signal or noise is interchanged.

Much of the remainder of this Chapter will provide additional context

for optical trapping and Brownian motion. We then briefly introduce the mass

and sound sensing experiments that comprise the primary results reported

herein. At the end, a high-level outline of this dissertation will provide a road

map for what is to come.

1.1 History as context

Optical trapping and Brownian motion are concepts situated deeply

within history and scientific literature. We will examine segments of each

2



Figure 1.2: Two-dimensional Brownian motion trajectory at different scales of
space and time. The upper black trace shows 10 seconds of simulated Brown-
ian motion. Each successive magnification corresponds to a 100× shorter time
trace. The original and first level of magnification depicts the random and
fractal nature of Brownian motion at large scales. The final level of magnifi-
cation depicts a portion of the underlying smooth trajectory.

3



concept’s history to better contextualize our work that follows.

1.1.1 Optical trapping

The idea that light can influence the motion of matter can be traced

back to at least 1619 [1]. To explain the observation that a comet’s tail always

points away from the sun, Johannes Kepler hypothesized that solar rays exert

a pressure [2]. A proper first-principles prediction of radiation pressure didn’t

arrive until over two and a half centuries later. In 1873, James Clerk Maxwell

published his Treatise on Electromagnetism [3]. In Chapter XX, Maxwell

used his theory of electromagnetism to deduce that light exerts a pressure:

“Hence in a medium in which waves are propagated there is a pressure in the

direction normal to the waves, and numerically equal to the energy in unit of

volume.” The same conclusion was arrived at independently by Bartoli based

on thermodynamic cycles [4]. In Bartoli’s thought experiment, light reflected

from moving mirrors could be used to transfer energy from a cooler body to a

warmer body without the expenditure of work, in violation of the second law

of thermodynamics. Bartoli calculated the pressure that light must exert to

save the second law and the result agreed with Maxwell’s [4].

In terms of everyday optical sources, radiation pressure is quite weak.

Maxwell estimates that an intense ray of sun exerts a pressure of 4.2 µPa on

an absorbing sheet. This is about a 5× smaller pressure than that of a barely

audible sound. Owing to the relatively weak pressure exerted by terrestrial

sources, the experimental verification of radiation pressure was met with chal-

4



lenges. Indeed, early experimental efforts led by De Mairan, Fresnel, and

Crookes were all thwarted by residual gas heating effects [5]. Perhaps most

famously, Crookes suggested in 1874 that radiation pressure could explain

why a balance’s measurements are influenced by optically radiation [6]. Fur-

ther developments led to the Crookes radiometer, a partially-evacuated glass

chamber in which four vanes, each with a black and silver side, are found to

rotate upon illumination. It turns out that the measured “radiation” pres-

sure was over 100 000× that predicted by Maxwell and Bartoli [5]. What’s

more, the vanes rotate in the opposite direction (black towards silver) com-

pared to the direction of maximum radiation pressure (silver towards black).

Instead of radiation pressure, the rotation of the Crookes radiometer is related

to the optically-heated black surface driving the residual gas in the chamber.

Successful measurements of radiation pressure were finally reported in 1901

by Lebedev1 in a high vacuum environment [5] and by Nichols and Hull in

a variety of lower-vacuum environments [7]. With modern technology, recent

work [8] has measured the pressure of radiation by directly monitoring the

elastic waves propagating in a mirror upon irradiation.

Despite the early challenges in even measuring optical radiation pres-

sure, today, the effect is of immense importance at an impressively broad

interdisciplinary scale. Like many aspects of science and technology, every-

thing changed in 1960 with the invention of the laser [9]. Because the laser is

1Soloviev’s English translation of Lebedev’s paper was useful in reviewing the pre-1901
history of radiation pressure.
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a special light source with high spatial coherence and spectral purity2, it can

be focused to an incredibly small spot size — on the order of radiation’s wave-

length. Thus, a 1 W light source, modest by laser standards, focused down

to 1µm corresponds to an irradiance of 1012 W/m2, about 16 000× larger

than the luminosity of the sun’s entire surface over all wavelengths (about

6.4× 107W/m2) [10]. Such an irradiance corresponds to a radiation pressure

of 3.3 kPa. Acoustic pressures of this magnitude are typically only observed

in shock waves produced by, e.g., explosions, firearms, and ruptured rubber

pressure vessels (also known as party balloons) [11].

It was Ashkin and coworkers who ultimately unlocked the potential of

radiation pressure as a means for manipulating matter [12]. Initially, micrometer-

scale glass spheres suspended in water were observed to move in the propa-

gation direction of a moderately focused beam. Because the water’s viscosity

imparts a velocity-dependent drag force and the radiation pressure exerts a

constant pushing force, the microsphere moves at a constant velocity, akin to

the terminal velocity of a skydiver. However, Ashkin also noted a wholly unex-

pected observation: the microspheres near the edge of the focused laser beam

were attracted inward to the high-intensity focus in addition to being pushed

along the propagation direction. This intensity-seeking force is now called the

gradient force while the forward pushing force is called the scattering force.

Despite only the scattering force being predicted and observed previously, the

2The spectral purity of an early iteration of the laser, the maser, was cause for some
debate between one of its inventors, Townes, and towering theorists like Bohr and Von
Neumann who asserted such a device could not be made [9].
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gradient force has a simple explanation in the view of light as rays that carry

momentum and refract upon entering a material. Furthermore, by applying

two laser beams in a co-linear and counter-propagating configuration, the scat-

tering forces cancel and particles can be stably trapped. A single vertical beam

can also be used to stably levitate particles in air or water against the force

of gravity [13] and a single very tightly focused, horizontal laser, sometimes

called optical tweezers, can be used to form a stable trap [14].

In the same original paper [12], Ashkin hypothesized that single atoms

could also be manipulated by laser beams if the frequency of light was tuned

to an atomic resonance. Resonant light scatters from an atom as if its cross-

sectional area were proportional to the light’s wavelength squared, which is a

few million times larger than the atom’s physical cross-sectional area. Ashkin

tested this hypothesis by creating an atomic beam velocity selector and isotope

separator [15]. Building on this work, Hänsch and Schawlow suggested that the

Doppler shifted frequency of light seen by an atom in motion combined with a

slightly off-resonant laser beam could be arranged to cool atoms in a technique

known today as optical molasses [16]. Ashkin also realized that by strongly

detuning the laser by, say, 100× the width of the resonance, atoms could be

stably trapped due to the presence of a gradient force. The full history of laser-

matter interactions is well beyond the scope of this introduction, but it is worth

noting the explosion of research that originated from Ashkin’s first simple

experiments. Multiple Nobel Prizes have been awarded in recognition of laser-

based manipulation and interrogation of matter: invention of the laser (1964
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Prize, Townes, Basov, and Prokhorov), atomic cooling and trapping (1997

Prize, Chu, Cohen-Tannoudji and Phillips), Bose-Einstein condensation (2001

Prize, Cornell, Ketterle, and Wieman), precision spectroscopy (2005 Prize,

Hall, and Hänsch, shared with Glauber for the theory of optical coherence),

and atoms as quantum systems (2012 Prize, Haroche andWineland) [17]. Most

recently, Ashkin was awarded a portion of the 2018 Prize for his bedrock work

outlined above, shared with Mourou and Strickland for their work in pulsed

laser amplification [17]. Today, advanced optical trapping techniques are used

in neutral-atom-based quantum computing to make defect-free arrays of single

atoms [18,19].

Beyond atomic physics, Ashkin recognized the utility of optical trap-

ping in biology. His early experiments demonstrated optical trapping of cells

[20], bacteria3, and viruses [22]. Trapping and manipulation of organelles

within cells have revealed mechano- and viscoelastic-properties of life at the

micro-scale with applications to genomic sequencing and in vitro fertiliza-

tion [23].

From Kepler’s initial hypothesis to Maxwell and Bartoli’s theoretical

predictions to Lebedev’s and Nichols and Hulls’ first measurements to Ashkin’s

nearly-exhaustive exploration, the story of radiation pressure is an archetype

for scientific progression. Ashkin’s trailblazing work set the vision for the field

so strongly that if ever one has a new application idea for optical trapping,

3Bacteria were grown from coworker Dziedzic’s ham sandwich [21].
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one should first check that Ashkin has not already performed the experiment

50 years ago. Even still, since Ashkin, the flurry of research activity enabled

by optical trapping, which continues to grow to this day, has fostered a large

and interdisciplinary network.

1.1.2 Brownian motion

Snap! A wooden pencil, held above my head for the audience of school

children cracks in half. “Is it still stuff ?” I ask the audience. The gymna-

sium resonates in the affirmative. Snap, and the pencil is now broken down

further. “Is it still stuff?” More affirmation. “What if I keep breaking and

keep breaking the pencil, is it still stuff? What is the tiniest possible amount

of stuff?” The school children respond “atom!”4. Perhaps surprisingly, school

children no more than 10 years old have understood that the stuff of reality

comes in indivisible packages, at least according to my physics outreach expe-

rience. Today, the existence of atoms, and even their sub-atomic constituents,

is everyday knowledge. This has not always been the case, however, and the

existence of atoms was once a topic of intense debate.

Though the idea of atoms and even the etymology of the word derives

from antiquity5, the mid-19th century marked the peak of the philosophical

and scientific divide between the continuists, who believed matter could be

divided infinitely, and the atomists, who believed matter is composed of dis-

4Other responses have included, dust, particle, wood, cell, molecule, and quark.
5Democritus used the Greek word atomos meaning “indivisible” for the smallest possible

amount of stuff.

9



crete elements called atoms which bond into stable groups called molecules.

Around this time (June-August 1827 to be precise), naturalist Robert Brown

was observing small particles extracted from pollen grains and suspended on

the surface of water. Brown observed the random and persistent motion of

the particles. The eponym “Brownian motion” is used to describe such motion

today despite similar observations made in the same year by Brongniart [24].

Even 131 years earlier, Gray observed “Globular forms in water” undergoing

“swift, progressive, irregular motion” using one of the first-available micro-

scopes [25]. However, these early observations supposed the motion was bi-

ological. Brown carried out additional observations on inorganic grains6 and

concluded the effect must not be biological, but he gave no further hypothesis.

In 1905 Einstein predicted that a small particle undergoing Brownian

motion would slowly displace from its starting point [26]. A car driving down

the highway at a constant velocity is displaced by an amount equal to its speed

times the time spent driving, but Einstein derived that a Brownian particle’s

displacement increases with only the square root of time. The car’s trajectory

is referred to as ballistic while the Brownian particle’s is diffusive. Shortly

after Einstein’s paper, Smoluchowski [27] and Langevin [28] gave alternative

theoretical arguments with essentially the same conclusion: A Brownian par-

ticle diffuses away from its starting position due to random collisions with

molecules. All three arguments were based on molecular kinetic theory and

thus made a testable prediction different from the continuist hypothesis.

6Including a pulverized fragment of the Sphinx.
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Convincing experimental evidence for the atomist’s hypothesis was pro-

vided by Svedberg – in his 1907 doctor’s thesis [29] – and Perrin [30] in 1909,

finally settling the debate in favor of the molecular theory of nature. For

this accomplishment, Svedberg was awarded the 1926 Nobel Prize in Chem-

istry and Perrin was awarded the 1926 Nobel prize in Physics. Interestingly,

an early discussion on the connection between Brownian motion and molec-

ular kinetic theory is provided by Delsaulx, who was inspired by the proper

understanding of the movements of the Crookes radiometer [31].

Despite the success of Einstein and Perrin in conclusively establishing

molecular reality, there was an obvious flaw in the theoretical description.

Einstein predicted that the average increment of displacement x over a time

interval t is x =
√
2Dt where D is called the diffusion constant. Thus, the

average velocity over the same increment and interval is v = x/t =
√

2D/t.

Observe that v diverges to infinity as t decreases to zero. On the other hand,

Einstein also knew from his special theory of relativity [32] that nothing could

travel faster than light. In 1907 Einstein worked out the correct theory of

Brownian motion [33].

The key insight was that at short enough time intervals the Brownian

particle’s trajectory becomes ballistic. The reason is that at such short time

scales there are too few molecular collisions to redirect the particle’s movement.

With this theoretical understanding, Einstein predicted that the distance in-

crement and time interval over which a Brownian particle’s trajectory is ballis-

tic are so small that they could never be observed. Indeed, the measurement
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requirements for observing a Brownian particle’s ballistic velocity are quite

stringent: One must be able to measure position with sub-nanometer resolu-

tion within a few microseconds. However, over 100 years after Einstein’s 1907

paper, our group met these measurement requirements are reported the first

observation of a Brownian particle’s ballistic velocity [34,35].

1.2 Contributions and outline

The path one takes on the road toward research goals is rarely a straight

one. Before and parallel to my experimental efforts detailed in this disserta-

tion, I had the opportunity to consider a range of unrelated problems. These

projects include novel atomic cooling methods [36], numeric simulation of

quantum cellular automata [37], and analysis of their quantum dynamics ob-

served on a superconducting quantum processor [38]. These efforts will not

be discussed further here. Instead, a reference to “we” is understood to mean

me, the author, my optical trapping and Brownian motion collaborators, and

you, the reader.

The present work builds on our group’s earlier efforts: the resolution

of the microsphere’s ballistic velocity is precisely what enables our two major

sets of results.

The first set of results is obtained in thermal and mechanical equilib-

rium. In other words, we record the position of the microsphere as it undergoes

Brownian motion due to collisions with air molecules. The system is calibrated

by separately measuring the air temperature and particle diameter, and mak-
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ing a few assumptions about the surrounding air medium. The full calibra-

tion reveals the trapped particle’s mass, the trapping strength provided by

the laser, and the detection system’s voltage-to-distance calibration constant.

Furthermore, we compare the accuracy and speed of three distinct particle

mass measurement techniques. Leveraging our ability to measure the micro-

sphere’s instantaneous velocity leads to a desirable balance between speed and

accuracy of mass measurement.

The second set of results pushes the microsphere out of equilibrium

using the flow field of sound waves. The sounds generated by a small speaker

or by pulsed laser-heating are detected in the microsphere’s motion. In post-

processing, the microsphere’s motion is converted into the fluid’s motion based

on theoretical models and the results are compared to two state-of-the-art,

commercially-available detectors. We again find that resolving the instanta-

neous velocity of the microsphere enables our measurement. Brownian motion

still occurs in these experiments, but in the case of sound detection, it is a

source of noise that must be overcome.

The remainder of this Dissertation is organized as follows: Chapter

2 lays out the theoretical models informing the analysis and interpretation

of experimental data. Chapter 3 describes the apparatus in detail. Chapter

4 reports the results and discusses the significance of the two experiments

outlined above. Finally, Chapter 5 summarizes this work and speculates on

the future of optically trapped microspheres as analytic measurement tools.
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Chapter 2

Technical Background

In this Chapter, we endeavor to detail much of the physics and math-

ematics needed to understand the results given in Chapter 4. Three main

sections organize this broad content. First, Section 2.1 develops the theory of

optical trapping. Second, Section 2.2 deals with signal analysis and defines

all of the quantifiers used to analyze experimental data. Third, Section 2.3

develops the theory of Brownian motion. The final Subsection 2.3.4 discusses

acoustics from a hydrodynamics perspective. Though not strictly related to

Brownian motion, this subsection on acoustics fits naturally with Subsection

2.3.2 on hydrodynamic Brownian motion.

2.1 Optically trapping small spheres

Consider light as a collection of photons with the same wavelength

λ = 1 µm and hence the same energy E = hc/λ and momentum p = h/λ,

where the speed of light is exactly c = 299 792 458m/s and Planck’s constant

is exactly h = 6.626 070 15×10−34 Js. A P0 = 15mW source generates a flux of

ṅ = P0/E = P0λ/hc ≈ 7.5× 1016 photons/s. If each photon is reflected from a

small sphere, the light imparts a constant force of F = 2pṅ = 2P0/c ≈ 10−10N .
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In contrast, a 1µm-diameter silica sphere has a mass of approximately 10−15

kg and hence a weight of approximately 10−14 N. According to this order-of-

magnitude estimate, the optical forces at play are significantly stronger than

the gravitational forces. In the remainder of this section, we will develop three

different models for calculating the forces of an optical trap. Section 2.1.1 uses

the ray optics approximation, Section 2.1.3 uses the dipole approximation, and

Section 2.1.4 considers Mie scattering calculations.

2.1.1 Ray optics picture

When the wavelength of light λ is much smaller than the characteristic

size of any object in the light’s path, then the light can be considered as

traveling in a straight line from its origin to the interface of the object. In

this geometric optics regime, wave effects like diffraction and interference are

ignored and light is modeled as a collection of rays. In this section, we will

show that ray optics offers an intuitive understanding of optical trapping and

even allows quantitative force calculations through numeric ray tracing.

To begin, let us define a ray by the tuple q⃗ = {o, k̂, P} that includes

the ray origin o, its unit-propagation direction k̂, and its optical power P in

units of W. One may parameterize the propagation of a ray by a vector of

length d according to

q(d) = o+ dk̂ . (2.1)

Consider a ray q⃗ traveling in a medium of refractive index n1 towards

a region or object R of refractive index n2. The surface of the object is the
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collection of points comprising its boundary: S = {rs ∈ ∂R}. At some distance

d0, the ray intersects the surface at the point q(d0) ∈ S.

Take as a specific object a sphere of radius R centered at c. This

object’s surface is defined by

|rs − c|2 = R2 , (2.2)

and its outward normal is

n̂(rs) =
rs − c

|rs − c| . (2.3)

The intersection distance d0 of a ray q⃗, if it exists, is found by solving Equa-

tion (2.2) subject to rs = q(d0). The resulting quadratic equation yields

d
(1,2)
0 = −α±

√
α2 − β , (2.4)

α = (o− c) · k̂ , β = |o− c|2 −R2 . (2.5)

When α2 − β > 0, the ray intersects the sphere at two points which we may

order d
(1)
0 < d

(2)
0 . When α2 − β ≤ 0, the ray does not intersect the sphere.

Upon incidence, a ray q⃗ = {o, k̂, P} is scattered into a reflected ray and a

transmitted ray

q⃗r = {q(d(1)0 ), k̂r, RσP} , (2.6)

q⃗t = {q(d(1)0 ), k̂t, TσP}. (2.7)

We next turn define the transmitted and reflected ray propagation directions

and ray powers.

16



The law of reflection states that the angle θ1 between n̂
[
q(d

(1)
0 )
]
(called

n̂ below for brevity) and k̂ is the same as the angle between n̂ and k̂r. Snell’s

law of refraction states that the angle θ1 is related to the angle θ2 between −n̂

and k̂t according to n1 sin θ1 = n2 sin θ2. From these laws and trigonometric

identities, one finds

k̂r = k̂+ 2c1n̂ , (2.8)

k̂t =
n1

n2

k̂+

(
n1

n2

c1 − c2

)
n̂ , (2.9)

were we have defined

c1 = cos θ1 = k̂ · (±n̂) , (2.10)

c2 = cos θ2 =

√
1− n2

1

n2
2

(1− c21) . (2.11)

The sign in Equation (2.10) is to be chosen such that c1 > 0 and that choice

of sign for n̂ propagates through Eqs. (2.8) and (2.9).

The Fresnel coefficients Rσ and Tσ = 1 − Rσ scale the reflected and

transmitted ray’s power (respectively) relative to the incident ray’s power.

σ ∈ {s, p} defines the incident ray’s polarization, discussed further in Section

2.1.2. The Fresnel coefficients are

Rs =
n1c1 − n2c2
n1c1 + n2c2

, (2.12)

Rp =
n1c2 − n2c1
n1c2 + n2c1

. (2.13)
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The above ingredients sufficiently define rays and spheres for ray trac-

ing. Ray tracing for a sphere works as follows: Given an initial ray q⃗0 =

{o0, k̂0, P0}, a sphere’s radius R and center c, and the refractive indices of

the medium n1 and sphere n2:

1. Find the first intersection q0(d
(1)
0 )

2. Compute the elements of the first reflected ray q⃗r1 and store it in a set

of external rays.

3. Compute the elements of the first transmitted ray q⃗t1 and store it as the

current internal ray q⃗int.

4. Compute the second intersection qint(d
(2)
int) of the current internal ray.

For numeric stability, shift the internal ray’s origin off the surface by a

small amount ϵ in the direction normal to its origin.

5. Compute the transmitted ray arising from the intersection of the current

internal ray and store it in the set of external rays. Note that while

working from internal rays, the roles of n1 and n1 are reversed.

6. Compute the reflected ray arising from the intersection of the current

internal ray and set it as the new current internal ray.

7. Repeat the previous three steps N times to account for N multiple in-

ternal reflections within the sphere.
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After concluding the above ray tracing algorithm, we have constructed a set

of external rays Q(q⃗0) = {q⃗r1, q⃗ti , i = 2, . . . N + 2}. Since a ray transfers

momentum along k̂ at a rate n1P/c, where c is the speed of light, ray tracing

gives the force exerted on the object as

F [q⃗0, Q(q⃗0)] =
n1

c

(
P0k̂0 − Pr1k̂r1 −

N∑
i=2

Ptik̂ti

)
. (2.14)
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Figure 2.1: Tracing rays (black lines) yields a net force (red arrows). N = 3
internal scattering events are included for each ray. The transverse force (a)
points upwards when the sphere is below the optical axis, and (b) points
downwards when above the optical axis. The longitudinal force always points
along the direction of the incoming beam, but (c) increases when the sphere
is in front of the focus, and (d) decreases behind it.
.

Finally, to simulate optical trapping of a sphere we may calculate the

net force caused by a set of M initial rays q⃗j, j = 1, 2, . . .M , that model a
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focused beam. In Figure 2.1 we show a two-dimensional example consisting a

sphere of radius R centered at (z0, x0)
T and a focused beam of M = 10 rays

originating from oj = (−5R, xj)
T with xj ∈ [−3R, 3R] and pointing towards

(0, 0)T . The beam power P0 is split evenly among the beams according to

Pj = P0/M . As the sphere is moved above or below the beam axis, there is

a gradient force driving the sphere back towards the optical axis. No matter

where the sphere is moved, there is always a scattering force pointing along the

optical axis. The scattering force increases when the sphere is behind the focus

and decreases when the sphere is in front of the focus due to the gradient effect

in the longitudinal direction. Figure 2.1 is computed assuming the trapping

medium is air (n1 = 1) and the sphere is silica (n2 = 1.47) for which the

longitudinal force never reaches zero, implying an unstable trap. We solve this

problem in our experiment by aligning a second beam counter-propagating to

the first to cancel the longitudinal scattering forces.

In Figure 2.2 we show the longitudinal and transverse force components

when spheres of various radii are moved through the beam. In particular, we

consider Fz(z, x = 0) and Fx(z = 0, x). The beam is comprised of 500 rays

originating from (−f, x0)T and pointing towards (0, 0)T, where f = 3mm and

x0 ∈ [−1mm,−1mm] (equivalent to a numeric aperture of 0.33). As observed

in Figure 2.2, the longitudinal force never reaches zero. The transverse force

is approximately linear near the focus and so has a quadratic potential U =

κxx
2/2. According to this ray optics calculation, the transverse trap strength

κx monotonically decreases with increasing sphere radius R.
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Figure 2.2: The (a) longitudinal (x = 0) and (b) transverse (z = 0) trapping
forces are shown as a function of a sphere’s position (z, x)T and radius R. (c)
The transverse trap strength κx, determined by linear fits near the trap center.
This calculation uses s-polarization, a total power of P0 = 50mW, n1 = 1,
and n2 = 1.47.

To summarize, it is sufficient to treat light as a ray so long as light’s

wave nature is irrelevant. Rays are deflected upon scattering from an object’s

surface and since light carries momentum the object experiences a force. Trac-

ing rays through an object and tracking their deflections allows one to make

quantitative force calculations. We found that micron-scale spheres can be

transversely bound to a focused beam of light. The binding is approximately

harmonic with strength on the order of a couple of 10s of fN/nm. For silica

spheres in air, the longitudinal force never reaches zero and hence the sphere

is unbound in the longitudinal direction. Despite the simple nature of the ray
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optics picture, more advanced techniques recover mostly the same conclusions

as above. While the ray optics calculations are accurate for R ≫ λ, our next

goal is to introduce an accurate approximation in the opposite regime R ≪ λ.

Before detailing the next approximation, we will first introduce the formalism

of light as an electromagnetic wave.

2.1.2 Light localization and Gaussian laser beams

As shown by Maxwell [3], the electromagnetic field supports wave solu-

tions. Light is identically an electromagnetic wave. In this section, plane-wave

solutions of the electromagnetic field are derived and interference of multiple

plane waves is shown to localize light intensity. The Gaussian beam model of

localized light is given towards the end.

We begin with Maxwell’s equations for the electric field E(r, t) and the

magnetic field B(r, t) at time t in a region r ∈ R that is absent of charge

density and current density:

∇ · E = 0 , (2.15)

∇ ·B = 0 , (2.16)

∇× E = −∂B
∂t

, (2.17)

∇×B = µ0ϵ0
∂E

∂t
, (2.18)

where µ0 ≈ 1.256 637 062 12× 10−6N/A2 is the permeability of free space and

ϵ0 ≈ 8.854 187 812 8× 10−12 F/m is the permittivity of free space. Taking the
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curl of Equation (2.17) and using the vector identity 1 ∇ × (∇A) = ∇(∇ ·

A)−∇2A gives

− ∂

∂t
(∇×B) = ∇(∇ · E)−∇2E . (2.19)

Substitute Equation (2.18) on the left-hand side and Equation (2.15) on the

right-hand side in the above to find the wave equation[
∇2 − 1

c2
∂2

∂t2

]
E(r, t) = 0 , (2.20)

where the c = 1/
√
µ0ϵ0 is the speed of light.

When the light field is monochromatic (i.e. laser light consisting of

a single angular frequency ω) the time dependence of the electric field may

be factored out: E(r, t) = E(r)e−iωt. It is understood that the real part of

the complex field is the physical quantity: Re [E(r, t)]. Separating variables

and introducing the separation constant −k2 leads to the vector Helmholtz

equation [
∇2 + k2

]
E(r) = 0 , (2.21)

and the dispersion relation k = ω/c. Each of the three i ∈ {x, y, z} components

Ei(r) of E(r) satisfy the scalar Helmholtz equation. Separating the spatial

variables in Cartesian coordinates as Ei(r) = Ai(x)Bi(y)Ci(z) leads to

1

Ai

d2Ai
dx2

+
1

Bi

d2Bi

dy2
+

1

Ci

d2Ci
dz2

= −k2 , (2.22)

1Using the Einstein summation convention, the completely antisymmetric Levi-Civita
symbol εijk, and the Kronecker-delta δij : [∇ × (∇ × A)]k = εijk∂i(ϵjmn∂mAn) =
−εjimεjmn∂i∂mAn = (δinδkm− δimδkn)∂i∂mAn = ∂k∂nAn−∂m∂mAk = [∇(∇·A)−∇2A]k.
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in which each term on the left-hand side depends on only one spatial vari-

able, yet the right-hand side is a constant. Hence, each left-hand side term is

individually equal to a constant:

d2Ai
dx2

= −k2xAi ,
d2Bi

dy2
= −k2yBi ,

d2Ci
dz2

= −k2Ci , (2.23)

k2x + k2y + k2z = k2 . (2.24)

Solutions to Equation (2.23) are of the form Ei(r) = E0ie
ik·r where k =

(kx, ky, kz)
T is normal to planes of constant E = |E|. Thus, we have found

plane wave solutions of the electric field

E(r, t) = E0e
i(k·r−ωt) , (2.25)

k2x + k2y + k2z =
ω2

c2
. (2.26)

To gain further insight into this solution let us set the coordinate system

so that ky = 0 and the incident angle of k with respect to the z-axis is θ. Then,

k = (k sin θ, 0, k cos θ)T. Equation (2.15) demands k · E = 0, so we may write

E(r) = E0

 cosϕ cos θ
sinϕ

− cosϕ sin θ

 eik(x sin θ+z cos θ) , (2.27)

where ϕ is the polarization angle. ϕ = 0 is known as p-polarization and ϕ = π/2

is known as s-polarization. Together, the p- and s-polarization components

form an orthogonal basis for the possible electric field vector orientations ϕ

given an angle of incidence θ. Let us choose ϕ = π/2 so that the only nonzero

component is

Ey(x, z; θ) = E0e
ik(xsinθ+zcos(θ)) . (2.28)
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Figure 2.3: The lower portion of each panel shows I(x, 0, z) with low intensity
colored purple and high intensity colored yellow. The white arrows points
along k of incident plane waves. The upper portion of each panel shows
I(x, 0, 0). x and y are in units of the wavelength λ = 2π/k and I is in units
of its maximum value. (a) The intensity distribution of a single plane wave
incident at angle θ = π/3. (b - d). The intensity distribution of multiple plane
waves incident at equidistant angles between −π/3 and π/3.

Figure 2.3 (a) plots the intensity I(x, z) ∝ |Ey(x, z; θ)|2 for a single

plane wave incident at angle θ. When there are multiple plane waves of

different incident angles θi, the fields interfere and the intensity I(x, z) ∝

|∑iEy(x, z; θi)|2 becomes localized around the point of incidence, as depicted

in Figures 2.3 (b-d). In general, the transverse profile at z = 0 of any field can

be decomposed as a weighted sum over all possible (transverse) plane waves

with incident wave vectors (kx, ky)
T and with kz =

√
ω2/c2 − (k2x + k2y). How-

ever, k for beam-like solutions will be dominated by the kz component leading

to the first-order binomial expansion, known as the paraxial approximation

kz ≈ k2
(
1− k2x + k2y

2k2

)
. (2.29)
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Figure 2.4: The intensity of a Gaussian beam (E0 = w0 = λ = 1) is depicted
with low intensity as purple and high intensity as yellow. The waist profile
is drawn in solid black. White contours mark where the electric field has
a constant phase. Black dashed lines depict the divergence angle. Axial and
radial line cuts of the intensity profile are shown above and right of the intensity
map, respectively.

A Gaussian beam is an approximately-paraxial solution for localized

light that accurately describes laser beams. The electric field of a Gaussian

beam is [39]

E(x, y, z, t) = E0
w0

w(z)
e−(x2+y2)/w2(z) exp

[
ikz − iη(z) + ik

ρ2

2R(z)
− iωt

]
,

(2.30)

w(z) = w0

√
1 +

z2

z20
, R(z) = z +

z20
z
, η(z) = arctan

z

z0
, (2.31)

where z0 = πw2
0/λ is the Rayleigh range and w0 is the beam waist. For z within

the Rayleigh range the beam is well localized according to w(|z| ≤ z0) ≤
√
2w0.

Beyond the Rayleigh range, the beam diverges linearly at an angle θ = λ/πw0
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with respect to the z-axis. Importantly, the Gaussian beam model describes

how all laser beams have a minimum waist somewhere along their beam path

beyond which the beam diverges; there is no such thing as an infinitely-parallel

beam of light.

In a medium of refractive index n, the intensity I(r) = nϵ0c|E(r)|2/2

of a beam may be conveniently written in terms of its optical power P =

πw2
0nϵ0c|E0|2/4 as

I(x, y, z) =
2P

πw2(z)
e−2(x2+y2)/w2(z) . (2.32)

Figure 2.4 depicts the intensity and phase of a Gaussian beam.

When a thin lens of focal length f is placed at the waist of a Gaussian

beam, a new waist w′
0 is formed a distance d beyond the lens where

d =
f

1 + f 2/z20
, (2.33)

w′
0 =

λf

πw0

1√
1 + f 2/z20

. (2.34)

The implication of Equation (2.34) is that a Gaussian beam may be very

tightly focused. For practical reasons, the ratio f/w0 cannot be made much

smaller than 1 because large w0 demands a large diameter lens and small f

demands a thick lens. Hence, in the best case, w′
0 ∼ λ. Moreover, the parax-

ial approximation that underpins the Gaussian beam solution breaks down

for tightly focused beams anyway: Even when λ/2πw0 = 0.1, the paraxial

approximation incurs an average error of about 4% in the electromagnetic

field components; fifth-order corrections reduce the average error to less than
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0.1% [40]. Nonetheless, the analytic tractability of the Gaussian beam solution

makes it a useful modeling tool, as we shall see in the following section.

2.1.3 Optical forces in the Rayleigh regime

When light impinges an object that is much smaller than the light’s

wavelength, the incident electric field is approximately constant over and inside

the object. In this Rayleigh regime the electric field polarizes the object such

that it may be considered a point dipole. In this section, we will develop the

optical forces on a sphere near the focus of a Gaussian laser beam in the dipole

approximation.

Consider a harmonic wave of the electromagnetic field {E(r)e−iωt,

H(r)e−iωt} wave with vacuum wavenumber k = 2π/λ = ω/c propagating in a

medium of refractive index nm towards a small sphere of index n and radius

R. Assume that the medium and particle are both non-magnetic and non-

conducting so that µ, µm ≈ µ0 and ϵ/ϵm ≈ n2/n2
m = m2

r . The parameters with

no subscript refer to the particle, the parameters with the m subscript refer

to the medium, and the relative refractive index is defined as mr = n/nm.

The dipole approximation holds if nmkR ≪ 1 and nkR ≪ 1. In the

dipole approximation, the sphere’s polarization is treated as a point dipole

moment p(r, t) = αE(r, t). The complex polarizability

α = α0

(
1− i

nmk
3α0

6πϵ0

)−1

, (2.35)

α0 = 4πn2
mϵ0R

3

(
m2

r − 1

m2
r + 2

)
, (2.36)
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includes polarization effects of the scattered field near the sphere surface [41].

The total amount of optical power diverted by the sphere, per unit

incident power-per-area, is the extinction cross section σext. The extinction of

light is split into two parts, absorption and scattering: σext = σabs + σsc. In

the case of non-conducting spheres σabs = 0. The optical theorem links the

cross-section to the complex polarizability

σext =
k

nm

Im[α] (2.37)

=
8
3
πR2(nmkR)

3(m2
r − 1)2/(m2

r + 2)2

1 + 4
9
(nmkR)6(m2

r − 1)2/(m2
r + 2)2

(2.38)

≈ 128π5n4
mR

6

3λ4

(
m2

r − 1

m2
r + 2

)2

. (2.39)

The last line makes use of the condition (nmkR) ≪ 1 to simplify the denomi-

nator. At the same level of approximation, note that Re[α] ≈ α0.

The time-averaged force on a dipole is given by the Lorentz Force law

[42]. For non-magnetic and non-relativistic dipoles, the force is [43,44]

⟨F ⟩ = 1

2
Re

α ∑
i∈{x,y,z}

Ei∇E∗
i

 (2.40)

=
1

2cϵ0nm

Re [α]∇I(r) + nm

c
σext⟨S⟩ −

1

2

c

nm

σext∇× ⟨s⟩ , (2.41)

where I(r) = 1
2
nmc|E(r)|2 is the intensity of the wave, ⟨S⟩ = 1

2
Re[E×H∗] is the

time-averaged Poynting vector and ⟨s⟩ = in
2
m

2ω
ϵ0(E × E∗) is the time-averaged

spin angular momentum density. Equation (2.40) is computationally conve-

nient because it only requires knowledge of the electric field. Equation (2.41)
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is conceptually useful because each term has a physical interpretation. The

first term is the gradient force. It is conservative. When Re[α] > 0 — or

equivalently n > nm — the gradient force points towards the wave’s intensity

maximum and is responsible for optical trapping. The second term is the scat-

tering force. It is non-conservative, points in the direction of the wave’s energy

flow, and must be overcome for stable optical trapping. The third term is the

spin curl force [45]. It is a non-conservative scattering force and is typically

zero or small compared to the other terms2. The spin curl force can become

significant in the presence of polarization gradients.

Let us now specialize the force calculation to a Gaussian beam propa-

gating along the z-axis. Take the beam waist as the origin of the coordinate

system so the incident electric field E(r, t) is given by Equation (2.30). For

this configuration ⟨S⟩ = I(r)ẑ, ⟨s⟩ = 0, and the intensity I(r) is given by

Equation (2.32). The gradient force is Fgrad = α0∇I/(2cnmϵ0). Expressing

∇I in terms of I and w,

Fgrad, x(x, y, z) = −x8πnmR
3

c

(
m2

r − 1

m2
r + 2

)
I(x, y, z)

w2(z)
,

Fgrad, y(x, y, z) = −y8πnmR
3

c

(
m2

r − 1

m2
r + 2

)
I(x, y, z)

w2(z)
,

Fgrad, z(x, y, z) = −z4πnmR
3

c

(
m2

r − 1

m2
r + 2

)
I(x, y, z)

w2(z)

w2
0

z20

(
1− 2(x2 + y2)

w2(z)

)
.

(2.42)

2There is some controversy over the reality of the spin gradient force in the dipole ap-
proximation [46, 47]. In general, the understanding of momentum and angular momentum
of light is quite subtle, especially in the presence of a medium [48,49].
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The scattering force is

Fsc =
128π5n5

mR
6

3cλ4

(
m2

r − 1

m2
r + 2

)2

I(x, y, z)ẑ . (2.43)
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Figure 2.5: The (a) longitudinal (x = 0) and (b) transverse (z = 0) trapping
forces are shown as a function of a sphere’s position (z, x)T and radius R. (c)
The transverse trap strength κx, determined by linear fits near the trap center,
is shown as a function of sphere radius. This calculation uses P0 = 50mW of
λ = 1064 nm light focused to a waist of w0 = 1 µm (numeric aperture 0.33),
nm = 1, and n = 1.47.
.

For a specific example, consider a silica microsphere of radius R and a

1064 nm-wavelength paraxial Gaussian beam focused with a numeric aperture

of 0.33. In Figure 2.5 (a-b) we show the longitudinal and transverse trapping

forces, respectively, for various R. Figure 2.5 (c) shows the transverse trap

strength as a function of R is monotonically increasing. Despite all relevant
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parameters held constant, the ray optics and Rayleigh scattering calculations

of the transverse trapping strength, show opposite trends. A more general

approach is needed to bridge between the two regimes when R ∼ λ.

2.1.4 Mie scattering

There exists a scattering regime in which neither the ray-optics picture

nor the Rayleigh approximation accurately describes the optical forces of a

focused laser beam on a microsphere. In this Mie scattering3 regime, the

scattering object is roughly the same size as the wavelength of impinging light.

For the case of a dielectric spherical scatterer and an incoming plane wave, the

solution has been known for more than a century [50–52]. More generally, the

optical force caused by an electromagnetic field may be found by the integral

of the total field’s time-averaged momentum density over any surface enclosing

the scatterer [53]. Calculating the optical forces in this regime is significantly

more involved than the two regimes considered previously.

Fortunately, mature and open-source numerical packages have been

written to solve the problem quite generally [54]. The package we use is called

the Optical Tweezers Toolbox [55]. The Optical Tweezer Toolbox uses the

point-matching T -matrix method [56]. In this method, the incoming and out-

going fields are expanded in terms of vectorial basis functions. The expansion

coefficients of the incoming beam are found by point-matching the field across

3While Mie is often the only early name associated with exact electromagnetic scattering
solutions, both Clebsch [50] and Lorenz [51] solved the same problem earlier than Mie.
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Figure 2.6: Comparing the transverse trap strength found through calculations
based on Rayleigh scattering, ray optics, and Mie scattering. All relevant
parameters are held constant across the three calculations. For radii near the
trapping wavelength λ = 1064 nm, only Mie scattering gives reliable results.

the scatterer’s boundary, providing a much more accurate description of a

focused beam than the paraxial approximation. The outgoing beam’s expan-

sion coefficients are linearly related to those of the incoming beam through

the T -matrix. The T -matrix encodes the scatterer’s material properties and

geometry.

In Figure 2.6 we show the transverse trap strength κx for λ = 1064 nm

light focused to a waist of 1 µm as a function of radius R. The Mie scattering

result interpolates between the Rayleigh scattering and ray optics regimes. The

quantitative agreement between the advanced Mie scattering software and our

custom ray optics code in the large-R limit provides some validation for our

implementation. Similar conclusions hold for our custom Rayleigh scatting

code in the small-R limit.
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Figure 2.7: Two-dimensional projections of the optical forces exerted by a
counter-propagating, dual-beam optical trap (beam 1: w0 = 2 µm, P0 =
56mW, beam 2: w0 = 3 µm, P0 = 70mW, offset longitudinally by 25 µm)
on a radius R = 1.51 µm silica microsphere. (a) shows the transverse plane at
the longitudinal minimum. (b) shows one of the longitudinal planes.

Due to the generality of the T -matrix method and its implementa-

tion in the Optical Tweezers Toolbox, we can make a model of our counter-

propagating dual-beam optical trap. In Figure 2.7 we show two-dimensional

projections of the optical trapping forces modeling our experimental trap. One

beam is traveling along the positive z-axis and focused to a waist of 2 µm at

the origin. The second beam is traveling along the negative z-axis and focused

to a waist of 3µm and offset in the z-direction by 25µm from the origin. The

scattering forces from the two beams cancel at the trap center leading to a

stable trap in all three dimensions. In Figure 2.8 we show the one-dimensional

line cuts of the trapping force. Clear positive-to-negative zero crossings in

all three dimensions indicate a stable trap. Fits near the trap center reveal

κx = 17 fN/nm, κy = 15 fN/nm, and κz = 3 fN/nm.
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Figure 2.8: One-dimensional line-cuts of force components. (a-c) Line cuts of
the data are shown in Figure 2.7. (d-f) A zoom of the region near the trap
center [red squares in (a-c)]. Solid lines are linear fits and open circles are
data calculated with the Optical Tweezers Toolbox.
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Through the last three subsections, we have considered the optical trap-

ping of microspheres in three size regimes. The ray optics picture is accurate

for large microspheres and provides intuition on how optical trapping works.

The Rayleigh limit is accurate for small microspheres and has the benefit

of computational simplicity. The most general approach discussed here, the

point-matching T-matrix method, is valid for any microsphere size. However,

quantitative modeling is challenged by the sensitivity of optical forces to input

parameters. Small changes in beam alignment or waist size can significantly

alter the calculation results. Such sensitivity is a fact of nature and therefore

underscores the technical challenges of aligning a dual-beam optical trap in

practice. The alignment will be discussed in detail in Chapter 3, but first, we

switch our focus to signal analysis.

2.2 Signal analysis

The labor of physics is largely divided into 1) devising physical theories

that make testable predictions and 2) testing those predictions against empir-

ical experiments. Experimental tests require the measurement of a physical

quantity present in the theory. Often one finds quantities that are easy to

measure and relates them to quantities of interest. For example, the weight of

an object may be measured by placing a calibrated spring between the object

and the Earth and measuring, with e.g. a ruler, the compression of the spring.

Another example is the measurement of eclectic current. The current-to-be-

measured is diverted into a wire coiled around a compass needle (such that the
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needle can still spin within the coil). In the absence of current, the device is

aligned with Earth’s magnetic field such that the compass needle points per-

pendicular to the coil axis. The presence of a current generates an additional

magnetic field, orthogonal to the needle’s rest position, and therefore redirects

the needle by a measurable angle that is proportional to the current.

The above two examples were specifically considered because they trans-

form gravitational or magnetic forces into measurable displacements. However,

it is much more common to measure electric potential differences, or voltages.

A primary reason for this is that voltages may be easily measured digitally

using analog-to-digital conversion (or digitization). A digitized voltage is a

binary representation of the magnitude of the voltage. The resolution of the

digital representation is set by the number of bits used in the conversion. For

example, optical power incident on a photodiode generates a proportional cur-

rent. The current is diverted through a known resistor and the voltage across

the resistor may be amplified, digitized, and stored in a computer. Later,

the data may be processed to convert from bits to voltage to current to op-

tical power. Typically, the conversion from bits to voltage is done internally

by the converter. Furthermore, every measurement has an associated uncer-

tainty. The statistical uncertainty represents the fluctuations in an ensemble

of identically-prepared measurements and thus quantifies precision. The sys-

tematic uncertainty quantifies the measurement’s accuracy and contains both

the bias due to uncertain conversions and the fundamental resolution of the

detection system (including the sensor, amplifier, and digitizer).
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Consider a process in which a physical quantity changes value. The

process may be deterministic, meaning that a corresponding theory predicts

the exact value of the changing quantity, or stochastic, meaning that the theory

predicts the probability distribution of the changing quantity. Regardless of

whether the underlying process is deterministic or stochastic, a signal (or a

sequence of measurements) will invariably fluctuate. That is to say, if the

process is flipping a fair coin, then the theory predicts an equal probability

of heads and tails. The signal generated by N coin flips (a record of the

outcomes) may approximate the probabilities of the underlying process using

statistics of the signal. It is very unlikely to find exactly N/2 heads in a

given signal, but the statistics approach the probabilities as N increases. In

practice, a signal is often derived from an analog-to-digital converter that is

used to record digitized voltages at uniformly-spaced, discrete times.

Stochastic processes, as opposed to deterministic ones, are often of in-

terest, especially in the micro- and nano-scales where thermal or quantum

fluctuations are themselves the process under study. Probability distributions

are defined by their statistical properties, like their mean and covariance. A

process is stationary if its governing distribution is independent of time. For

example, imagine measuring the weight of an object 100 times in a day. Sup-

pose the measurement outcomes are distributed as a Gaussian, defined by a

mean and variance. Then repeat the experiment every few years and otherwise

leave the object undisturbed. If one finds that the distribution of measure-

ments is characterized by the same mean and variance each year (within the
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measurement’s uncertainty) then one may conclude the process (the state of

the object between measurements, e.g. sitting at rest) is stationary. However,

stationarity depends on the scope of the measurement. The above type of

experiment has indeed been performed on the object formerly defined as the

kilogram in the SI unit system. However, it was found that the mean mass

(weight divided by the local gravitational field) was slowly decreasing [57].

Obviously, the definition of a unit should be a stationary variable. Recently,

the kilogram was re-defined in terms of fundamental constants of nature [58].

These constants are believed to be stationary, though experiments seeking

variations in such fundamental constants are ongoing [59].

In the remainder of this Section, we deal with the analysis of fluctu-

ating signals derived from stochastic processes. The tools defined herein are

quite subtle mathematically and we will largely ignore these subtleties. In-

stead, we focus on standard results and intuition-building calculations that

are instructive for interpreting experimental data.

2.2.1 Basic statistics and time-domain quantities

When a signal x(t) is recorded from a stationary and stochastic process,

examining it directly is not particularly informative. We are interested in

analysis techniques that elucidate the underlying process x. For this purpose,

we will define basic statistics as well as the autocorrelation function, power

spectral density, and mean-squared-increment.

The probability that x(t) is between the values q and q+dq is Px(q)dq
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where Px is the probability density for realizations x(t) from the process x.

The ensemble average or expected value is

⟨x(t)⟩ =
∫ ∞

−∞
dq qPx(q) . (2.44)

For a large number M of realizations x(i)(t), i = 0, 1, . . .M − 1, one can

estimate the expected value as the sample average

⟨x(t)⟩ = 1

M

M−1∑
i=0

x(i)(t) . (2.45)

Similarly, the sample variance 4 is

〈
[x(t)− ⟨x(t)⟩]2

〉
=

1

M

M−1∑
i=0

[
x(i)(t)− ⟨x(t)⟩

]2
. (2.46)

Unless mentioned otherwise, we will assume ⟨x(t)⟩ = 0 so the ensemble vari-

ance is equal to the second moment

⟨x2(t)⟩ = 1

M

M−1∑
i=0

[
x(i)(t)

]2
. (2.47)

Stationary implies that, for all t, ⟨x(t)⟩ = µx, ⟨x2(t)⟩ = σ2
x, and similar for all

higher order statistics. Hence, for example, ⟨x2(t)⟩ = ⟨x2(0)⟩.

In general, the ensemble average is distinct from the time-average x(t).

For a long measurement time Tm, the time average may be approximated by

the function mean

x(t) =
1

Tm

∫ Tm

0

dt x(t) . (2.48)

4With divisor M , the sample variance gives the maximum likelihood variance if x is
Gaussian distributed. With divisor M − 1 the sample variance gives an unbiased estimate
of the M → ∞ population variance.
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When the time average equals the ensemble average we may refer simply to

the mean and variance of the process

⟨x(t)⟩ = x(t) = µx , ⟨x2(t)⟩ = x2(t) = σ2
x . (2.49)

When all statistics have equal ensemble and time averages, a stationary process

is called ergodic. Suppose we have collected a digital signal x = x(t) → x =

{xj} where xj = x(tj) is the j
th measurement collected at time tj = jδt. The

sample rate is fs = 1/δt. Having N samples of the signal corresponds to a

measurement window of t ∈ [0, Tm] where Tm = (N − 1)δt ≈ Nδt. The time

average of a digital signal is

x(t) =
1

N

N−1∑
j=0

xj . (2.50)

Sometimes the sampling interval δt is much smaller than any other time

scale of interest. In these cases, it can be advantageous to low-pass-filter the

signal to eliminate excessive statistical fluctuations in x that do not reflect

the dynamics of the underlying process. This type of filtering may be done

by defining a new signal as the block average over non-overlapping length-τ

segments of the old signal. The jth element of the new signal corresponds to

the (left-aligned) time jτ and is calculated as

x(τ:j) =
1

τ

∫ (j+1)τ

jτ

dt x(t) j = 0, 1, . . . Tm/τ − 1 , (2.51)

Where the notation τ:j is introduced for the time interval t ∈ [jτ, (j + 1)τ ].

For a digital signal with τ = nδt

x(τ:j) =
1

n

n−1∑
i=0

xjn+i j = 0, 1, . . . N/n− 1 . (2.52)
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The time derivative of a signal is

ẋ(t) =
dx(t)

dt
. (2.53)

For a digital signal, one may estimate the derivative using finite differences.

For example

ẋ(t) =
xj+1 − xj−1

2δt
+ O(δt2) , (2.54)

=
1

δt

(
xj−4

280
− 4xj−3

105
+
xj−2

5
− 4xj−1

5
+

4xj+1

5
− xj+2

5
+

4xj+3

105
− xj+4

280

)
+ O(δt8) .

(2.55)

In Equation (2.54) j = 1, 2, . . . , N−2 while in Equation (2.55) j = 4, 2, . . . , N−

5.

A signal’s variance may be generalized to the ensemble average of the

product of two possibly unequal-time measurements. This autocorrelation

function or autocovariance is

Cxx(t, t
′) = ⟨x(t)x(t′)⟩ = Cxx(τ) = ⟨x(τ)x(0)⟩ , (2.56)

where the second equality uses the stationary property and defines the lag

time τ = t − t′. For a zero-mean, ergodic, digital signal, the autocorrelation

function at lag τk = kδt may be estimated by

Cxx(τk) =
1

N − k

N−k−1∑
j=0

xjxj+k . (2.57)

In practice, one typically limits τk/Tm ≲ 0.05 in Equation (2.57) so that sta-

tistical fluctuations are adequately suppressed. The autocorrelation function
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answers the question: on average, how correlated are two values of x separated

in time by τ? Intuitively, the magnitude of correlation decreases as τ increases

because information about a particular event is lost as time passes. Often Cxx

is found to scale as a decaying exponential with characteristic time scale τx.

The mean-squared increment (or mean-squared displacement when x

is a position measurement) is defined as ⟨∆2(τ)⟩ = ⟨[x(τ)− x(0)]2⟩. For a

stationary signal,

⟨∆2(τ)⟩ =
〈
[x(τ)− x(0)]2

〉
= 2

[
⟨x2(0)⟩ − ⟨x(τ)x(0)⟩

]
. (2.58)

If the signal is ergodic and digitized, one may estimate

⟨∆2(τk)⟩ =
〈
[xk − x0]

2
〉
=

1

N − k

N−k−1∑
j=0

(xj+k − xj)
2 . (2.59)

The mean-squared displacement measures how much the signal deviates from

its starting value after a time τ .

The Allan variance (or two-sample variance) is defined as half the

mean-squared difference between adjacent block averages of a signal as a func-

tion of block length [60,61]

A2
x(τ) =

1

A− 1

A−2∑
j=0

1

2

[
x(τ:j+1)− x(τ:j)

]2
. (2.60)

where A = N/n is the number of independent length τ = nδt blocks in the sig-

nal of length Tm = Nδt. The Allan variance is sensitive to drifts in the signal.

For an ergodic process, the squared difference between adjacent bin averages

should decrease as ∼ 1/τ since ideally they only differ due to finite statistics,
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which improve according to the standard error of the mean. In reality, slow

processes, (e.g. drifts in environmental temperature) break stationarity at long

time scales, and A2
x(τ) will no longer decrease as ∼ 1/τ .

2.2.2 Power spectral density

So far, we have considered analysis techniques based on time-domain

data. For frequency-domain techniques, we must define the Fourier transform

and its inverse5

x̃(ω) =

∫ ∞

−∞
dt eiωtx(t) , (2.61)

x(t) =

∫ ∞

−∞

dω

2π
e−iωtx̃(ω) . (2.62)

Consider the quantity ⟨x̃(ω)x̃(ω′)⟩. Substitute Equation (2.61) for x̃ to find

⟨x̃(ω)x̃(ω′)⟩ =
∫ ∞

−∞
dt

∫ ∞

−∞
dt′eiωteiω

′t′Cxx(t− t′) .

Change variables to τ = t − t′ and s = (t + t′)/2 from t = s + τ/2 and

t′ = s − τ/2. The Jacobian of the transformation ∂(t, t′)/∂(τ, s) has unit

determinate, so now

⟨x̃(ω)x̃(ω′)⟩ =
∫ ∞

−∞
ds ei(ω+ω

′)s

∫ ∞

−∞
dτ ei(ω−ω

′)τ/2Cxx(τ) = 2πδ(ω + ω′)Sxx(ω)

(2.63)

In writing Equation (2.63), we have used the Dirac-delta

δ(q − q′) =

∫ ∞

−∞

dk

2π
e−i(q−q

′)k , (2.64)

5The existence of the Fourier transform and its inverse for a stochastic signal is not
guaranteed, but we shall proceed without further hesitation.
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and defined the power spectral density as the Fourier transform of the auto-

correlation function (as well as the corresponding inverse transformation)

Sxx(ω) =

∫ ∞

−∞
dτ eiωτCxx(τ) , (2.65)

Cxx(τ) =

∫ ∞

−∞

dω

2π
e−iωτSxx(ω) . (2.66)

In practice, Equation (2.65) is not particularly useful for analysis. In-

stead, one truncates the Fourier transform at long (but finite) measurement

time Tm

x̃Tm(ω) =
1√
Tm

∫ Tm

0

dt x(t)eiωt . (2.67)

Then, the periodogram is defined as ⟨x̃Tm(ω)x̃Tm(−ω)⟩. Since x(t) is real-

valued, x̃Tm(ω) is complex and (x̃Tm(ω))
∗ = x̃Tm(−ω). The periodogram is〈

|x̃Tm(ω)|2
〉
=

1

Tm

∫ Tm

0

dt

∫ Tm

0

dt′ ⟨x(t)x(t′)⟩eiω(t−t′) .

As done above, change variables to τ = t− t′ and s = (t+ t′)/2 and assume x

is stationary to write〈
|x̃Tm(ω)|2

〉
=

1

Tm

∫ Tm

0

ds

∫ α(s)

−α(s)
dτ Cxx(τ)e

iωτ ,

where

α(s) =

{
2s s ≤ Tm/2

2(Tm − s) s > Tm/2
.

When Tm is long compared to the correlation time of the signal (Tm ≫ τx), we

may extend the τ integration limits α → ∞ and the periodogram estimates

the power spectral density 〈
|x̃Tm(ω)|2

〉
= Sxx(ω) , (2.68)
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Since we have defined the power spectral density as the Fourier transform of

the autocorrelation function, Equation (2.68) is a statement of the Wiener-

Khinchin theorem.

When x(t) is a digital signal x = {xj}, one evaluates Equation (2.67)

in terms of a discrete Fourier transform. The fast Fourier transform is an

efficient algorithm implemented in many programming languages. For exam-

ple, the implementations available in Python via the packages Scipy or Numpy

calculate the quantity (assuming N is even)

x̃k =
N−1∑
j=0

xje
−2πikj/N k = 0, 1, . . . , N − 1 , (2.69)

fk =

{
k
Nδt

0 ≤ k ≤ N/2

− k
Nδt

N/2 < k ≤ N − 1
. (2.70)

Identifying tj = δtj, and ωk = 2πfk reveals

Sxx(fk) =
δt

N
|x̃k|2 . (2.71)

Note that Equation (2.69) and Equation (2.61) differ in the sign convention

chosen for the complex exponential. This is inconsequential for the real-valued

power spectrum. Further practical aspects of computing power spectral densi-

ties will be given in Section 2.2.3. However, Equation(2.71) provides a useful

interpretation of the power spectral density. Sxx(f) describes how much of the

signal’s variance is contained in a component pure tone at frequency f , per

unit frequency. Suppose x has units of V . Then Sxx(f) has units of V
2/Hz.

Since the voltage measurements must be made across some resistance Z, the
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electric power in a signal is V 2/Z which explains the origin of the name power

spectral density.

2.2.3 Relationships between statistical quantifiers

We shall now explore the variety of ways in which quantities defined

above are interrelated. First, a signal’s variance will be related to its auto-

correlation function, mean-squared displacement, and power spectral density.

Then, the relationship between the power spectra of linearly-dependent signals

is considered.

We begin by discussing how variance is related to the various quanti-

ties discussed in the previous section. Equation (2.58) for the mean-squared

displacement can be rewritten in terms of the autocorrelation function

⟨∆2(τ)⟩ = 2 [Cxx(0)− Cxx(τ)] . (2.72)

The autocorrelation function at zero lag is identically the signal’s variance

Cxx(0) = σ2
x. Thus for a decaying autocorrelation function Cxx(τ) ∼ e−τ/τx ,

the long-time limit of the mean-squared displacement is twice the variance

lim
τ→∞

⟨∆2(τ)⟩ = 2σ2
x . (2.73)

Parseval’s theorem or the Plancherel theorem relates the time-domain variance

of a signal to the integral of the power spectral density. For large Tm,

σ2
x =

1

Tm

∫ Tm

0

dt |x(t)|2 =
∫ ∞

−∞
df Sxx(2πf) =

1

2π

∫ ∞

−∞
dω Sxx(ω) . (2.74)

47



Since Sxx(−ω) = Sxx(ω), Sxx(ω) is often visualized as the one-sided power

spectral density 2Sxx(ω > 0)6. For similar reasons, one may express the band-

limited variance over frequencies f1 > 0 to f2 > 0 as

σ2
x(f1, f2) = 2

∫ f2

f1

dfSxx(2πf) . (2.75)

Next, let us relate the power spectral densities of two processes. Specif-

ically, consider two processes related by a linear time-invariant transformation.

For example, suppose a system takes xi(t) as an input and gives yi(t) as an

output. Linearity means that, for constants a and b, the input ax1 + bx2 gives

the output ay1 + by2. Time-invariance means that an input xi(t− τ) gives an

output yi(t−τ) for all τ . The input-output relationship is completely captured

by the impulse response h(t). The impulse response is the system’s output in

response to the input δ(t). Given h(t), the output y is the convolution of the

input x with the impulse response h

y(t) =

∫ ∞

−∞
dτ x(τ)h(t− τ) . (2.76)

In the frequency domain, convolutions become multiplication, so

ỹ(ω) = x̃(ω)h̃(ω) . (2.77)

The quantity h̃ is given many names and symbols depending on the nature

of the system. Examples include frequency response, linear-response function,

6unfortunately, one- and two-sided power spectral densities are given the same symbol
in the literature. Typically two-sided versions are used for theory calculations and one-
sided versions for comparison to experiments. We try to explicitly label spectra as one- or
two-sided.
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susceptibility, transfer function, sensitivity, filter, impedance, mobility, and

admittance. It then follows that the power spectra of the two quantities are

related by

Syy(ω) = |h(ω)|2Sxx(ω) . (2.78)

When y = ẋ one has the useful identity

Sẋẋ(ω) = ω2Sxx(ω) , (2.79)

which follows from differentiation of Equation (2.61): ˜̇x(ω) = −iωx̃(ω). For a

discrete, length-N signal collected with a sampling interval δt, it is tempting

to then write ˜̇xk = i2πfkx̃k (accounting for the difference in sign convention

mentioned earlier). However, the result consistent with Equation (2.54) for

the finite difference is in fact [62]

˜̇xk = i
sin
(
2πfkδt
N

)
δt

x̃k . (2.80)

An additional consequence of Equation (2.79) is

Cẋẋ(t) =

∫ ∞

−∞

dω

2π
e−iωtω2Sxx(ω) = − d2

dt2
Cxx(t) . (2.81)

2.2.4 Calculating the power spectral density

Estimating the power spectral density from real discrete data requires

further attention. For this purpose let us call Ŝxx,k = Ŝxx(fk) the estimated
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one-sided power spectral density

Ŝxx(fk) =
2δt

WN

∣∣∣∣∣
N−1∑
j=0

w
(N)
j xje

−2πijk/N

∣∣∣∣∣
2

, (2.82)

fk =
k

Nδt
, (2.83)

for k = 0, 1, . . . , N/2. Here, we have generalized Equation (2.67) and Equa-

tion (2.71) to include an optional window function w
(N)
j that scales the signal

xj, typically so that x0, xN−1 ≈ 0. A power correction factor

WN =
N−1∑
j=0

∣∣∣w(N)
j

∣∣∣2 . (2.84)

accounts for the attenuation introduced by the window. For the box-car or

rectangular window w
(N)
j = 1, Equation (2.83) recovers twice the value of

Equation (2.71) (the factor of two accounts for the one-sidedness). We will

also make use of the Hamming window

w
(N)
j = 0.54− 0.46 cos

(
2πj

N − 1

)
. (2.85)

Let us assume that x(t) is linearly related to a stationary stochastic

variable ξ(t) whose realizations follow a Gaussian probability density

Pξ(q) =
1√
2πσξ

e
−q2

2σ2
ξ , (2.86)

with µξ = 0 and Cξξ(t) = δ(t). Since ξj is Gaussian-distributed, ξ̃k = ξ̃′k + iξ̃′′k

has real (ξ̃′k) and imaginary (ξ̃′′k) parts distributed independently and identi-

cal to ξj. Then, Ŝxx,k ∝ |ξ̃k|2 is distributed as the modulus-squared of two
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independent identical Gaussian variables. The joint distribution of real and

imaginary parts is

Pξ̃′,ξ̃′′(q, p) =
1

2πσ2
ξ

e
−(q2+p2)

2σ2
ξ .

The probability that |ξ̃k|2 = ξ̃′2k + ξ̃′′2k is less than z is given by the cumulative

distribution function

F|ξ̃k|2(z) =

∫
(q2+p2)<z

dqdpPξ′,ξ′′(q, p) .

In polar coordinates q = r cosϕ, p = r sinϕ, dpdq = rdrdϕ,

F|ξ̃j |2(z) =

∫ √
z

0

r dr

σ2
ξ

e
−r2

2σ2
ξ = 1− e

−z

2σ2 .

The probability density is related to the cumulative distribution according to

P(z) = dF (z)/dz:

P|ξ̃j |2(z) =
1

2σ2
ξ

e
−z

2σ2
ξ . (2.87)

The result Equation (2.87) says that if an ergodic signal xj is Gaussian-

distributed then a particular realization of its periodogram Ŝxx,k is exponen-

tially-distributed. It follows from the properties of exponential distributions

that µ2
Ŝxx,k

= σ2
Ŝxx,k

= 2σ2
ξ , meaning the periodogram estimate fluctuates dra-

matically from one realization to the next: σŜxx,k
/µŜxx,k

= 1. Moreover, a good

model for the power spectral density, parameterized by a vector of quantities

θ, S
(θ)
xx,k = Sxx(2πfk;θ), should follow the true power spectral density process

mean S
(θ)
xx,k = µŜxx,k

, and hence

PŜxx,k
(z) =

1

S
(θ)
xx,k

e−z/S
(θ)
xx,k . (2.88)
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To suppress the fluctuations inherent in the periodogram, one often

takes an ensemble average over independent periodograms. In practice, this

may be done with Bartlett’s method by splitting the signal {xj, j = 0, 1, . . . , N−

1} into n independent blocks {{x(i)j , j = 0, 1, . . . , N/n−1}, i = 0, 1, . . . , n−1},

computing the periodogram of each block Ŝ
(i)
xx,k = Ŝx(i)x(i),k, then averaging the

result:

⟨Ŝxx,k⟩ =
1

n

n−1∑
i=0

Ŝ
(i)
xx,k , (2.89)

fk =
kn

Nδt
, k = 0, 1, . . . ,

N

2n
. (2.90)

What is probability density of ⟨Ŝxx,k⟩? It is clearly the probability density of

the sum of n random variables 1
n
Ŝ
(i)
xx,k,. By scaling Equation (2.88) we have

P 1
n
Ŝ
(i)
xx,k

(z) =
n

S
(θ)
xx,k

e−nz/S
(θ)
xx,k .

The probability density of the sum of n independent and identically distributed

random variables is the nth convolution of the probability density with itself.

The convolution of n exponential distributions may be calculated via induction

and is called the Erlong distribution

P⟨Ŝxx,k⟩(z) =
e−nz/S

(θ)
xx,k

S
(θ)
xx,k

nn

(n− 1)!

(
z

S
(θ)
xx,k

)n−1

. (2.91)

Importantly, µ⟨Ŝxx,k⟩ = S
(θ)
xx,k and σ⟨Ŝxx,k⟩ = S

(θ)
xx,k/

√
n. We see that Bartlett’s

method suppresses fluctuations by a factor of 1/
√
n. The cost of splitting the

initial signal into smaller blocks is evident in Equation (2.90): the spectral

resolution fk+1 − fk is reduced by a factor of n. For simplicity of notation,
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we will drop the ⟨·⟩, and a reference to Ŝxx,k is understood to be Erlong-

distributed.

The final result of interest for this section pertains to curve fitting

power spectral density estimations. Typical least-squares fitting algorithms

assume Gaussian-distributed data. As we have shown, Bartlett’s power spec-

tral density estimation is Erlong-distributed. Since the distribution is known,

one may employ maximum likelihood fitting. To fit the model S
(θ)
xx , one may

maximize the likelihood of a particular realization zk ∈ {Ŝxx} given the model

parameters θ

L(Ŝxx;θ) =
∏
k

PŜxx,k
(zk) . (2.92)

Maximizing Equation (2.92) is equivalent to minimizing its negative logarithm

ℓ(Ŝxx;θ) = − logL(Ŝxx;θ) = n
∑
k

(
log [Sxx(fk;θ)] +

zk
Sxx(fk;θ)

)
+ C ,

(2.93)

where C =
∑

k[log[(n−1)!]−n log n− (n−1) log zk] is a constant with respect

to the model parameters and thus inconsequential for the minimization.

2.3 Theory of Brownian motion

As discussed in Section 1.1.2, Brownian motion refers to the random

and persistent motion of micro-scale objects coupled to a thermal environment.

The environment is understood to affect the Brownian particle in two inex-

orably linked ways: 1) The fluid is comprised of molecules in random motion;

collisions with an object impart a stochastic or fluctuating thermal force. 2)
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Through its viscosity, the fluid diffusivity transports momentum from layers of

higher velocity towards layers of lower velocity. Since the velocity of the par-

ticle and fluid match that at the particle’s boundary, the particle experiences

a velocity-dependent drag drag force. Therefore, the particle gains kinetic en-

ergy through collisions and losses it through viscous dissipation. In thermal

equilibrium the gain and loss of energy are equal and hence fluctuations and

dissipation must be related to one another. Building out this and related ideas

occupies the remainder of this Chapter. In Section 2.3.1 the dynamics of Brow-

nian motion are modeled by the Langevin equation assuming an uncorrelated

thermal force. Section 2.3.2 considers the case when hydrodynamic effects of

the fluid, like its inertia and memory, induce correlations in the thermal force.

Such correlations are typically not relevant for optically trapped spheres in

air, but their hydrodynamic origin becomes relevant for acoustic detection at

high frequencies. Then, Section 2.3.3 considers Brownian motion subject to

the effects of confinement imposed by an optical trap. Finally, Section 2.3.4

introduces basic concepts of acoustics from the hydrodynamic perspective.

2.3.1 Einstein-Ornstein-Uhlenbeck theory

The one-dimensional Langevin equation of motion for a spherical Brow-

nian particle of radius R, density ρ, and mass m = 4πρR3/3 coupled to a fluid

with viscosity η at temperature T is

mv̇(t) + γ0v(t) = gξ(t) , (2.94)
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where v(t) = ẋ(t) is the particle’s velocity and x(t) its position at time t.

The thermal force Fth(t) = gξ(t) is of strength g and ξ(t) is Gaussian white

noise: ξ(t) is a stationary, stochastic variable defined by the probability density

(2.86) with zero mean µξ = ⟨ξ(t)⟩ = 0 and δ-correlation Cξξ(t) = ⟨ξ(t)ξ(0)⟩ =

δ(t). The drag force is Fd(t) = −γ0v(t). If the fluid density ρf is not too

high (in a gas as opposed to a liquid) then we may write γ0 = 6πηR for

a small spherical particle. As discussed above, the dissipation strength γ0

and fluctuation strength g must be related in thermal equilibrium. Analysis

of Equation (2.94) in terms of the statistics defined in Section 2.2 produces

the Einstein-Ornstein-Ulenbeck theory for a Brownian particle’s mean-squared

displacement [63].

The first step is to write Equation (2.94) in the frequency domain in

terms of ṽ(ω) and ξ̃(ω). Using Equation (2.62)∫ ∞

−∞
dt eiωt

[
iωmṽ(ω) + γ0ṽ(ω)− gξ̃(ω)

]
= 0 .

For the above equality to hold for all circular frequencies ω, the integrand

must be zero. Hence

ṽ(ω) = gξ̃(ω)
γ0 + iωm

γ20 +m2ω2
. (2.95)

By approaching the problem in frequency space, we have implicitly asserted

that averages over initial conditions are equivalent to ensemble averages over

realizations. This need not be the case if x(0) and v(0) may be controlled either

experimentally or through post-selection of data [64, 65]. In the current case

where the initial conditions are taken as fluctuating, the equipartition theorem
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associates an average energy of kBT/2 with each quadratic degree of freedom

— kB = 1.380 649× 10−23 J/K is (exactly) Boltzmann’s constant. That means

m⟨v2(0)⟩/2 = kBT/2, or equivalently σ
2
v = kBT/m.

The Wiener-Khinchin theorem (2.68) gives the power spectral density

of velocity as

Svv(ω) =
g2

γ20 +m2ω2
Sξξ(ω) .

By definition (2.66) of the power spectral density and the assumption Cξξ =

δ(t), we find Sξξ = 1 and

Cvv(t) =

∫ ∞

−∞

dω

2π
e−iωtSvv(ω) =

g2

2πm2

∫ ∞

−∞

dω e−iωt

(ω − iγ0/m)(ω + iγ0/m)
.

To evaluate the integral by the residue theorem, extend ω to the complex

plane and note the poles in the integrand at ω = ±iγ0/m. When t > 0 take a

contour integral around a semicircle in the lower half ω-plane so that the arc

contribution is zero and the real-line contribution is equal to the residue of the

lower pole. For t > 0 the contour is taken in the upper half-plane. Define the

momentum relaxation time τp = m/γ0 to write the net result

Cvv(t) =
g2

2γ0m
e−|t|/τp =

kBT

m
e−|t|/τp . (2.96)

Since Cvv(0) = σ2
v = kBT/m we have set g =

√
2kBTγ0 in the second equality.

This is a statement of the fluctuation-dissipation theorem because it relates

the strength of the fluctuating force g to the strength of the damping force γ0.

Having set g, we have the (two-sided) velocity power spectral density

Svv(ω) =
2kBTγ0

γ20 +m2ω2
. (2.97)
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According to Equation (2.81), C̈xx = −Cvv. Integrating once,

Ċxx(t ≥ 0) =
−kBT
m

(
−τpe−t/τp + A

)
]

Ċxx(t ≤ 0) =
−kBT
m

(
τpe

t/τp + A′) .
Since x is driven by a stationary process, Cxx(t) = Cxx(−t) and hence Ċxx(t) =

−Ċxx(−t). Enforcing the odd parity of Ċxx at t = 0 requires A = −A′ =

−m/γ0. Integrating again gives

Cxx(t) =
2kBT

m

(
B − τp|t| − τ 2pe

−|t|/τp
)
. (2.98)

The Brownian particle is free to diffuse through all of space, so σ2
x = Cxx(0)

is not defined. That means we do not have a condition to fix B. However

Equation (2.72) for the mean-squared displacement is independent of B:

⟨∆2(t > 0)⟩ = 2kBT

γ0

(
t+ τpe

−t/τp − τp
)
. (2.99)

Equation (2.99) for the mean-squared displacements captures the qualitative

features of Brownian motion discussed in Section 1.1.2. At short times the par-

ticle displaces from its original position at a constant velocity σv =
√
kBT/m.

At long times the particle displaces diffusivity (proportional
√
t) with dif-

fusion constant D = kBT/γ. These limits are apparent from the fact that

e−t/τp ≈ 1− t/τp + t2/2τp for t≪ τp and e−t/τp ≈ 0 for t≫ τp. Explicitly,

√
⟨∆2(t)⟩ =

{
σvt t≪ τp√
2Dt t≫ τp

. (2.100)

The ballistic velocity of a Brownian particle immersed in air was first experi-

mentally measured in [34].
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Figure 2.9: The dynamics of a free particle evolving under the Langevin equa-
tion of motion are simulated. (a) Position exhibits persistent random fluctua-
tions and a slow diffusion away from the starting point. (b) Velocity fluctuates
faster and has a well-defined variance. (c) The (one-sided) position power spec-
tral density and (d) the velocity power spectral density are both shown on a
log scale. (e) The mean-squared displacement and (f) the velocity autocorre-
lation function. In panels (c - f) the solid lines show the theoretical predictions
while the open symbols are calculated from the discrete simulation data.
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We have now established several theoretical results for statistical quan-

tities calculated on the position and velocity of a Brownian particle whose

motion is governed by the Langevin equation (2.94). This provides an oppor-

tunity to verify the discrete versions of the same quantities through simulation

of the digitized dynamics xj and vj. To simulate a signal, we approximate the

derivatives in Equation (2.94) as finite differences with a time step δt. The

thermal force is Fth,j = ξj
√

2kBTγ/δt where ξj is a pseudo-random number

drawn from a Gaussian distribution with zero mean and unit variance at each

time step j. When v̇ = ẍ is approximated by a second order central-difference

and ẋ by a first-order forward difference then [66]

xj =
2 + δt/τp
1 + δt/τp

xj−1 −
1

1 + δt/τp
xj−2 +

√
2kBTγ

m (1 + δt/τp)
δt3/2ξj , (2.101)

vj =
xj − xj−1

δt
. (2.102)

Given initial conditions x0 and v0, one may set x1 = x0 + v0δt and x2 =

x0 + 2v0δt. Higher-order finite difference schemes may be implemented for

faster convergence with respect to the time step size δt.

In the simulations shown in Figure 2.9, a fourth-order Runge-Kutta

integrator is used to solve for xj and vj simultaneously. We have set R =

1.5 µm, ρ = 1700 g/cm3, T = 300K, and η = 18 µPa s, corresponding to a 3 µm

diameter silica microsphere immersed in air at room temperature and in zero

gravity. With these parameters m = 2.4 × 10−14 kg = 24 pg, τp = 47 µs, and

σv = 0.42mm/s. The simulation takes N = 5 × 105 steps of size δt = 200 ns

for a total time of Tr = 100ms. The simulated position and velocity are
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shown in Figure 2.9 (a - b). The power spectral density of position and

velocity, mean-squared displacement, and velocity autocorrelation function,

ensemble-averaged over 100 simulations, and are shown in Figure 2.9 (c - f).

Each quantifier identifies τp as the only relevant time scale. The agreement

between simulations and theory validates our numeric implementation of the

quantifiers.

2.3.2 Hydrodynamic considerations

In Section 2.3.1 we derived various quantities of interest for the Langevin

description of a Brownian particle. The whole process began by restricting to

cases in which the hydrodynamic drag force on the particle could be expressed

as Fd(t) = −γ0v(t). From there we transformed into frequency space and

found Equation (2.95) relating ṽ(ω) to F̃th(ω). Power spectral densities and

autocorrelation functions for both position and velocity as well as the mean-

squared displacement could then be calculated from Equation (2.95). To make

this process more systematic note that Equation (2.95) is in the form of Equa-

tion (2.77). That is, ṽ(ω) = Y(ω)F̃th(ω) where we have defined the admittance

Y(ω) = (γ0 − iωm)−1 . (2.103)

The Kubo-Green formula links the admittance to the velocity autocorrelation

function for an equilibrium system [67]

Y(ω) =
1

kBT

∫ ∞

0

dt eiωtCvv(t) . (2.104)
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The definition (2.65) of the power spectral density combined with stationarity

Cvv(−t) = Cvv(t) reveals

Svv(ω) = 2kBT Re [Y(ω)] . (2.105)

Hence through Sxx = Svv/ω
2 and the inverse formula (2.66) we find

Cvv(t) =
kBT

π

∫ ∞

−∞
dω e−iωtRe[Y(ω)] , (2.106)

Cxx(t) =
kBT

π

∫ ∞

−∞
dω e−iωt

Re[Y(ω)]

ω2
. (2.107)

The fluctuation-dissipation relation now follows from Equation (2.78) as

SFthFth
(ω) = 2kBT

Re[Y(ω)]

|Y(ω)|2
. (2.108)

As we will see in a specific example below, a wide class of hydrodynamic

problems may be modeled by a complex, frequency-dependent damping coef-

ficient γ(ω), resulting in the admittance Y = [γ(ω)− imω]−1. The fluctuation-

dissipation relation is then

SFthFth
(ω) = 2kBTRe[γ(ω)] . (2.109)

The recipe given in Equations (2.104) through (2.109) shows how one

may calculate (at least numerically) the statistical quantities of interest for

Brownian motion given the admittance of the system. The formula used in

Section 2.3.1 for the drag force assumed a rarefied medium like a gas, but

more generally the hydrodynamic force is the fluid stress integrated around the

microsphere’s boundary. The stress in a fluid is related to its velocity u(r, t),
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pressure P (r, t), and density ρf(r, t) whose values are coupled through the

Navier-Stokes equations. Realistic assumptions may be imposed to simplify

the Navier-Stokes equations:

1. Linearization

ρf(r, t) → ρf + ρ′f(r, t) , P (r, t) → P + P ′(r, t) , (2.110)

where the primed quantities represent the small variation on the equilib-

rium (un-primed) quantities, and only terms linear in the primed quan-

tities are maintained.

2. Small Reynolds number

Re =
ρfuR

η
, (2.111)

where the length scale is taken as the microsphere radius R and η is

the fluid’s dynamic viscosity. Small Re means that velocity advection is

negligible thereby linearizing the fluid’s velocity degree of freedom.

3. Incompressibility

∇ · u(r, t) = 0 , (2.112)

is valid for flows with velocity scale u≪ c0 where c0 is the speed of sound

in the fluid.

4. A non-heat-conducting fluid implies entropy production is negligible (in

the linear approximation) and hence the flow is isentropic (constant en-

tropy s). Equivalently, the pressure varies only with the density and that
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variation defines the speed of sound

c0 =

√(
∂P

∂ρf

)
s

. (2.113)

From such assumptions, one may express the hydrodynamic drag force on

a sphere moving with velocity v(t) in a fluid otherwise at rest. When any

bounding walls are far from the sphere and the fluid velocity is assumed to

match the sphere velocity at the sphere’s surface, the hydrodynamic drag force

is [68]

Fd[v(t)] = −1

2
δmv̇(t)− γ0

(
v(t) +

√
τf
π

∫ t

−∞
dt′

v̇(t′)√
t− t′

)
. (2.114)

The vorticity diffusion time, defined as

τf =
R2ρf
η

=
9

2
δτp , (2.115)

is the amount of time it takes for vorticity (the curl of velocity) to diffuse

across the sphere. The density ratio is δ = ρf/ρ. For a silica microsphere in

air δ ∼ 10−3 ≪ 1 hence τf ≪ τp and Equation (2.114) reduces to Fd[v(t)] ≈

−γ0v(t). For silica in water τf ∼ τp, so Equation (2.114) gives the correct

hydrodynamic drag force, as long as the above four assumptions remain valid.

Furthermore, Equation (2.114) is given the following physical interpre-

tation: The first term accounts for the added mass. That is, the acceleration of

the sphere is impeded due to the inertia of the fluid made to follow the surface

of the sphere as it moves. As a result, the dressed sphere massm∗ = m(1+δ/2)

appears in the equipartition theorem: σ2
v = kBT/m

∗. The added mass effect
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is a consequence of incompressibility. At time scales shorter than τc0 = R/c0

compressibility of the flow matters and the added mass effect is expected to

vanish, though this has yet to be experimentally verified. The second term is

the usual viscous Stokes damping where γ0 = 6πηR. The third term is called

the Basset history force. The history force accounts for the fact that when the

sphere accelerates it sets up flow fields in its vicinity. A moment later, those

flow fields have diffused away slightly but the sphere still feels their influence

through the fluid’s viscosity. A moment after that, all the information about

the initial acceleration event has diffused away. In this way, the fluid has a

finite memory of the sphere’s history and that memory has a back-action on

the future dynamics of the sphere. Armed with Equation (2.114) we seek the

corresponding admittance7.

To find the admittance, express the general Langevin equation

mv̇(t)− Fd[v(t)] = Fth(t) , (2.116)

in the frequency domain by assuming a harmonic response v(t) = v0e
−iωt and

solving for v/Fth. The substitution s =
√
t− t′, dt′ = −2sds in the integral

term of Equation (2.114) allows v to factor out of Equation (2.116) on the

left-hand side, leading to

Y(ω) =

[
γ0

(
1− 2iω

√
τf
π

∫ ∞

0

ds eiωs
2

)
− iωm(1 + δ/2)

]−1

.

7While we have started from Equation (2.114) and seek the admittance, the first-
principles calculation starts from the Navier-Stokes equations, transforms to frequency
space, identifies the admittance, and inverts to real space to end at Equation (2.114).
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The remaining integral may be evaluated in the complex s-plane. Take a

1/8th-circle wedge contour with an angle of 45◦ with respect the Re[s]-axis.

The contour encloses no poles and the arc section goes to zero by Jordan’s

lemma 8. We deduce the integral of interest is identically minus the integral

along the diagonal back to the origin. What remains is a Gaussian integral

that may be evaluated by considering the integral-squared and changing to

polar coordinates. To summarize,∫ ∞

0

ds eiωs
2

= eiπ/4
∫ ∞

0

ds e−ωs
2

=
1

2

√
iπ

ω
.

Hence the admittance of a Brownian particle in a bulk, incompressible fluid is

Y(ω) = [γ(ω)− iωm]−1 (2.117)

=

(
1 +

√
τfω/2

)
− i
[
τpω + τfω/9 +

√
τfω/2

]
γ0

(
1 +

√
τfω/2

)2
+ γ0

[
τpω + τfω/9 +

√
τfω/2

]2 , (2.118)

where the frequency-dependent damping is, as given by Stokes [69]

γ(ω) = γ0

(
1 +

√
−iτfω − i

τfω

9

)
= γ0

(
1 +

√
τfω/2

)
− iγ0

√
τfω/2

(
1 +

2

9

√
τfω/2

)
,

(2.119)

and
√
−i = −i

√
i = (1− i)/

√
2 defines the square-root branch cut. It is now

straightforward to write the (two-sided) power spectral densities for velocity,

8Using the triangle inequality and the identity 4θ ≤ π sin(2θ) for θ ∈ [0, π/4],∣∣∣∫arc ds eiωs2
∣∣∣ <

∫
arc

ds
∣∣∣eiωs2

∣∣∣ = R
∫ π/4

0
dθ e−ωR2 sin(2θ) ≤ R

∫ π/4

0
dθ e−4ωR2θ/π =

π
(
1− e−ωR2

)
/4ωR, which goes to zero as R → ∞.
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position, and the thermal force

Svv(ω) =
2kBT

γ0

1 +
√
τfω/2(

1 +
√
τfω/2

)2
+
[
τpω + τfω/9 +

√
τfω/2

]2 , (2.120)

Sxx(ω) =
Svv(ω)

ω2
, (2.121)

SFthFth
(ω) = 2kBTγ0

(
1 +

√
τfω/2

)
. (2.122)

Critically, we find frequency-dependent damping leads to a non-white

thermal force spectrum. Equivalently, the fluctuating thermal force is corre-

lated in time. However, in calculating the inverse transform Equation (2.66)

to find CFthFth
(t), confusion may arise due to 1) the presence of the square-

root in SFthFth
(ω), 2) ensuring causality, and 3) properly accounting for initial

conditions. Indeed, while much of the literature reports,

CFthFth
(t) = 2kBTγ0

(
δ(t)− 1

4

√
τf
π
t−3/2

)
,

the correct formula is claimed to be [70]

CFthFth
(t) = 2kBTγ0

[
δ(t)− 1

2

√
τf
πt

(
1

τp
+

1

2t

)]
, (2.123)

which has a slower decaying term ∼ t−1/2 as compared to ∼ t−3/2. The t−3/2

law is still correct for t ≲ τp.

Formulae for the velocity autocorrelation function Cvv(t) and the mean-

squared displacement ⟨∆2(t)⟩ may also be expressed analytically [71,72]. The

full equations are not particularly informative but their limits are. At long

times, Cvv(t → ∞) ∝ σ2
vt

−3/2, which is significantly slower than the expo-

nential decay predicted by the Einstein-Ornstein-Uhlenbeck theory of Section
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2.3.1. Historically, numeric studies on the motion of atoms in liquid argon

gave the first indication of long-time tails in the velocity autocorrelation func-

tion [73]. Additional early theoretical work [74–76] recovered the asymptotic

behavior from the perspective of hydrodynamics. As for the mean-squared dis-

placement, the short- and long-time limits agree with the Einstein-Ornstein-

Uhlenbeck Equation (2.100) but with σ2
v = kBT/m

∗. The short-time motion

of a Brownian particle in a liquid was first experimentally measured in [35].

The experiments reported on later in Chapter 4 were all performed

in air, so the hydrodynamic effects discussed in this Section are negligible in

equilibrium Brownian motion. However, in acoustic detection hydrodynamic

corrections become relevant at frequencies above a few hundred kilohertz. The

theory underlying acoustic detection will be discussed in Section 2.3.4, but

first, we revise the theory of Brownian motion to account for spatial confine-

ment.

2.3.3 Harmonic confinement

When a microsphere is optically trapped it experiences gradient and

scattering forces, as discussed in Section 2.1. While trapped and in thermal

equilibrium with the surrounding fluid, the microsphere undergoes Brownian

motion. Obviously, the confinement imposed by the trap limits how far the

microsphere may diffuse. Therefore, the statistical quantifiers of Brownian

motion, like power spectral densities, autocorrelation functions, and mean-

squared displacement, must be adapted. This section considers the effects of
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confinement on Brownian motion with an emphasis on the results for a particle

in air.

For small excursions r from the trap center, an optically trapped mi-

crosphere experiences a linear restoring force Ftrap,i = −kiri along all three

dimensions i ∈ {1, 2, 3}. Larger excursions couple the motion along different

dimensions according to a Duffing non-linearity. The non-linear coupling ef-

fect is clear when considering Equation (2.42) for the gradient force in the

Rayleigh regime. Expanding the force to third-order reveals

Ftrap,i(r) ≈ −κiri
(
1 +

3∑
j=1

ζjr
2
j

)
,

where ζ1,2 = −2/w2
0, ζ3 = −2/z20 , and κi are the linear trap strength coeffi-

cients. In the Mie-scattering regime, a similar non-linear coupling can occur.

For simplicity will assume strictly linear restoring forces and hence harmonic

confinement:

Ftrap,i(r) = −κiri = mω2
0,iri , (2.124)

where ω0,i =
√
κi/m are the natural frequencies of the harmonic trap. Let us

consider a single dimension and simplify notation to Ftrap(x) = −κx = mω2
0x.

The microsphere’s potential energy is U(x) = κx2/2. The position x is now

a quadratic degree of freedom so the equipartition theorem demands σ2
x =

kBT/κ.

The one-dimensional Langevin equation of motion reads

mẍ(t)− Fd[ẋ(t)]− Ftrap[x(t)] = Fth(t) . (2.125)
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Expressing Equation (2.125) in terms of v(t) = ẋ(t) and transforming to the

frequency domain gives the admittance

Y(ω) = [γ(ω)− iωm+ iκ/ω]−1 . (2.126)

For a microsphere in a liquid, γ(ω) is given by Equation (2.119). The-

oretical details [72] and experimental measurements [35] on a Brownian mi-

crosphere harmonically bound in a liquid will not be discussed further here.

Instead, we will focus on the results for air-based optical trapping.

In air at temperature T with viscosity η, γ(ω) ≈ γ0 = 6πηR. As a

result, Equation (2.125) becomes the equation of motion for a thermally driven

damped harmonic oscillator. The oscillation frequency is ω1 =
√
ω2
0 − (2τp)−2

where the momentum relaxation time is τp = m/γ0. The system is under-

damped when ω0 > (2τp)
−1, over-damped when ω0 < (2τp)

−1, and critically-

damped when ω0 = (2τp)
−1. Equations (2.105) and (2.79) give the (two-sided)

velocity and position power spectral densities

Svv(ω) =
2kBT

γ0

ω2

τ 2p(ω
2 − ω2

0)
2 + ω2

, (2.127)

Sxx(ω) =
Svv(ω)

ω2
. (2.128)

In Chapter 4 we shall find a use for the equivalent one-sided forms

Sxx(ω) =
4kBTγ0

(mω2 − κ)2 + γ20ω
2
, (2.129)

Svv(ω) =
4kBTγ0ω

2

(mω2 − κ)2 + γ20ω
2
. (2.130)
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The position and velocity autocorrelation functions may be found via contour

integration of Equation (2.107) and Equation (2.106), respectively. For this

purpose, we may factorize the denominator of Equation (2.127) as

τ 2p(ω
2 − ω2

0)
2 + ω2 = (ω − ω++)(ω − ω−+)(ω − ω−−)(ω − ω+−)

where ωs′s′′ = s′ω1+ s
′′i(2τp)

−1 and s′, s′′ ∈ {+,−}. For t > 0 (t < 0), a lower-

(upper-) half-plane semi-circular contour encloses the two poles with s′′ < 0

(s′′ > 0) such that the arc’s contribution is zero and the residue theorem gives

Cxx(t) =
kBT

κ

(
cosω1t+

sinω1|t|
2ω1τp

)
e−|t|/2τp , (2.131)

Cvv(t) =
kBT

m

(
cosω1t−

sinω1|t|
2ω1τp

)
e−|t|/2τp . (2.132)

We can verify the equipartition theorem is satisfied by Cxx(0) = σ2
x = kBT/κ

and Cvv(0) = σ2
v = kBT/m. Equations (2.131) and (2.132) are valid for the

under-damped case as well as the over-damped case by the identities cos iθ =

cosh θ and sin iθ = i sinh θ. Finally, the mean-squared displacement follows

immediately from Equation (2.131) and Equation (2.72) as

⟨∆2(t)⟩ = 2kBT

κ

[
1− e−t/2τp

(
cosω1t+

sinω1t

2ω1τp

)]
. (2.133)

As expected from Equation (2.73), ⟨∆2(t→ ∞)⟩ = 2σ2
x.

The effects of confinement may easily be accounted for in simulations

of Brownian motion by the addition of a linear restoring force. In Figures

2.10 and 2.11 we show the position and velocity statistics (respectively) of

a silica microsphere (R = 1.5 µm, ρ = 1700 g/cm3) in air (T = 300K, and
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η = 18 µPa s) and trapped harmonically with strengths κ = 1 fN/nm and

κ = 50 fN/nm. The simulations takes N = 5 × 105 steps of size δt = 200 ns

for a total time of Tr = 100ms. Statistical quantities are averaged over 100

independent simulations.
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Figure 2.10: (a) The simulated position of a silica microsphere undergoing
Brownian motion subject weak (κ = 1 fN/nm, gold) and strong (κ = 50 fN/nm,
purple) harmonic confinement. The simulation (open symbols) and theoret-
ical (solid curves) results are shown for the (b) position probability density,
(c) position power spectral density, (d) normalized position autocorrelation
function, and (e) mean squared displacement.

The raw position data in Figure 2.10 (a) shows large fluctuations around

the trap center for a weak trap and small fluctuations for a strong trap. Figure

2.10 (b) shows the probability density of observed positions calculated as a

histogram of the data in Figure 2.10 (a) compared to the theoretical curve
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Equation (2.86) with σ2
x = kBT/κ. Figure 2.10 (c) shows the position power

spectral density calculated as the periodogram Equation (2.89) of simulated

data compared to the theoretical curve Equation (2.129). Similarly, Figure

2.10 (d) shows the normalized position autocorrelation function Cxx(τ)/σ
2
xx

calculated from the simulation data according to Equation (2.57) compared

to the theoretical curve Equation (2.131). Finally, for the mean squared dis-

placement Equation (2.59) provides the numeric implementation and Equa-

tion (2.133) provides the theoretical curve. Figure 2.11 is like Figure 2.10 but

for the velocity degree of freedom v(t) for which σ2
v = kBT/m. Notice that

harmonic confinement does not alter the total velocity variance but does al-

ter how the variance is distributed in frequency space. We do not show the

mean-squared velocity increment because it has not historically been of con-

cern. In future studies, especially those venturing out of thermal equilibrium

or to high-Reynolds-number flows, the mean-squared velocity increment and

more-general velocity structure functions could be of interest.

Now we have cross-checked our numeric implementation and theoretical

predictions of various quantifiers of harmonically-confined Brownian motion in

air using simulated data. In the next section, we will return to hydrodynamics

to understand acoustic forces on a trapped microsphere.

2.3.4 Acoustics

When a fluid is excited by a sudden compression event, energy is trans-

ported in the direction of compression in the form of acoustic radiation. As
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Figure 2.11: (a) The simulated velocity of a silica microsphere undergoing
Brownian motion subject weak (κ = 1 fN/nm, gold) and strong (κ = 50 fN/nm,
purple) harmonic confinement. The simulation (open symbols) and theoretical
(solid curves) results are shown for the (b) velocity probability density, (c)
velocity power spectral density, and (d) velocity autocorrelation function.
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long as the compression is not too strong and the viscosity not too high, the

radiation propagates without distortion as a longitudinal wave. Such is the

regime of linear acoustics. In this section, elements of linear acoustics are de-

veloped to understand the motion of an optically trapped microsphere when

driven by a linear acoustic wave.

In Section 2.3.2 we outlined four key simplifying assumptions to the

Navier-Stokes equations. Assumption number 3. asserted the flow was incom-

pressible, but that is no longer strictly valid when the flow supports acoustic

waves. Instead, the conservation of mass requires

∂

∂t
ρ′f(r, t) = −ρf∇ · u(r, t) , (2.134)

where, as before, un-primed quantities represent the ambient fluid properties

in the absence of a perturbation, the primed quantities represent the pertur-

bation, and only terms linear in primed quantities are retained. At the same

level of approximation, the conservation of momentum is expressed as Euler’s

equation of motion

ρf
∂

∂t
u(r, t) = −∇P ′(r, t) . (2.135)

Also as before, assumption 4. for a non-heat-conducting fluid implies adiabatic

compression

P ′(r, t) =

(
∂P

∂ρf

)
s

ρ′f(r, t) = c20ρ
′
f(r, t) , (2.136)

where c0 is the speed of sound. Substituting Equation (2.136) into Equa-

tion (2.134) eliminates the density fluctuations in favor of the pressure fluc-

tuations. Taking the time derivative of the result and comparing it to the
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divergence of Equation (2.135) reveals the wave equation in pressure. Con-

versely, Taking the divergence of Equation (2.134) [after eliminating density

fluctuations using Equation (2.136)] and comparing to the time derivative of

Equation (2.135) reveals the wave equation in velocity. Critically, we see that

a sound wave is a wave of pressure and a wave of velocity9[
∇2 − 1

c20

∂2

∂t2

]
P ′(r, t) = 0 , (2.137)[

∇2 − 1

c20

∂2

∂t2

]
u(r, t) = 0 . (2.138)

Solutions may be found by separating variables in a given coordinate system.

As done for light waves in Section 2.1.2, plane wave solutions are found upon

separating variables in Cartesian coordinates. Let us reset notation and refer

to the perturbation P ′(r, t) as the acoustic pressure p(r, t). Then plane wave

solutions read

p(r, t) = p0e
i(k·r−ωt) , (2.139)

u(r, t) = u0e
i(k·r−ωt) . (2.140)

The wave amplitudes are p0 and u0. The wave vector k points orthogonal to

planes of constant pressure/velocity and velocity points in the direction of k.

The wave number k = |k| = 2π/λ is related to the circular frequency ω = 2πf

through the speed of sound c0 = ω/k = λf where λ is the wavelength and f

is the wave frequency. We can see that the fluid velocity and pressure of a

9Since density is proportional to pressure, sound is also a density wave. Additionally, the
conservation of energy reveals a wave equation in temperature. Temperature and density
waves will not be considered further here.
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plane acoustic wave are in phase. Moreover, the amplitudes p0 and u0 must

be related such that momentum and mass are conserved. Without loss of gen-

erality, take k = kx̂. Then p(x, t) = p0e
i(kx−ωt). Integrating the conservation

of momentum gives ρfc0ux(x, t) = p(x, t) + g(x) where g(x) is an unknown

function of position. Conversely, integrating the conservation of mass gives

ρfc0ux(x, t) = p(x, t) + f(t) where f(t) is an unknown function of time. Thus,

we conclude g(x) = f(t) = 0 and

p0 = Z0|u0| , (2.141)

where we have defined the impedance Z0 = ρfc0. Clearly, the impedance de-

pends on the medium properties through its density and sound speed. Perhaps

less obvious is that this formula for the impedance was derived for plane wave

solutions and thus the impedance also depends on the sound source’s geome-

try. More generally, acoustic pressure and velocity need not be in phase and

the impedance may be a complex function of frequency. For example, the

impedance at a distance r from a spherical acoustic source of wave number k

is

Zsph(r) = Z0kr
kr + i

kr + 1
, (2.142)

while for a cylindrical source

Zcyl(r) = iZ0
H

(2)
0 (kr)

H
(2)
1 (kr)

, (2.143)

where the H
(2)
j (x) are Hankel functions of the second kind.

When an acoustic wave impinges on an object, the object experiences a

force. For a small particle-like object, the force is caused by the local velocity
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and pressure. In other words, write u(t) and p(t) without spatial dependence

to reflect the fact that forces are caused by fluid properties local to the particle.

Such a description is valid as long as the particle’s size and excursion remain

much smaller than the length scale over which the fluid properties change in

the sound wave (the wavelength λ).

The exact solution for the force on a sphere immersed in a harmonic

sound wave of circular frequency ω (assuming a small Reynolds number and

a non-heat-conducting fluid) is known [77]. The result is given as a transfer

function H(ω) = ṽ(ω)/ũ(ω) where ũ is the Fourier velocity amplitude of the

fluid and ṽ(ω) is the Fourier velocity amplitude of the sphere. From this

exact solution, the incompressible limit ωη/ρfc
2
0 ≪ 1 may be found. A simpler

calculation [78,79] arrives at the same result by using Equation (2.114) for the

force on the sphere due to the fluid-velocity wave. The force due to the pressure

wave is proportional to the pressure gradient. Integrating Equation (2.135)

over the volume of the sphere with a diameter assumed small compared to the

acoustic wavelength suggests the pressure gradient force is

F∇(t) = −4

3
πR3∇P (t) = δmu̇(t) . (2.144)

In one dimension, we may write the net external force caused by the

sound wave as Fext(t) = Fd[−u(t)] + F∇(t). The one-dimensional equation of

motion for an optically trapped microsphere is

mv̇(t)− Fd[v(t)]− Ftrap[x(t)] = Fth(t) + Fext(t) . (2.145)
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For the moment let us ignore the thermal force so that

mv̇(t)−δmu̇(t) + 1

2
δm [v̇(t)− u̇(t)]

+ γ0

(
v(t)− u(t) +

√
τf
π

∫ t

−∞
dt′

v̇(t′)− u̇(t′)√
t− t′

)
+ κx(t) = 0 .

(2.146)

Assume a harmonic drive u(t) = u0e
−iωt and response v(t) = v0e

−iωt so that

u̇(t) = −iωu(t), v̇(t) = −iωv(t), and x(t) = iv(t)/ω. As done in Section 2.3.2,

make the substitution s =
√
t− t′ to evaluate the history term. Solving for

the transfer function H(ω) = v/u gives

H(ω) =
γ(ω)− iωδm

γ(ω)− iωm+ ik/ω
= Y(ω) [γ(ω)− iωδm] , (2.147)

where γ(ω) is given by Eq (2.119). Equation (2.147) exposes the contribution

of the pressure gradient force −iωδm = −2iγ0ωτf/9 and the optical trap iκ/ω

to the transfer function. In terms of time scales τf and τp we have

H(ω) =
A+ iB

A+ iC
, (2.148)

A = ω
(
1 +

√
ωτf/2

)
, (2.149)

B = −ω
√
ωτf/2

(
1 +

2

3

√
ωτf/2

)
, (2.150)

C = τp
(
ω2
0 − ω2

)
− ω

√
ωτf/2

(
1 +

2

9

√
ωτf/2

)
. (2.151)

The transfer function gives the oscillation amplitude and phase of the micro-

sphere’s motion relative to the amplitude and phase of the sound wave. The

transfer function amplitude and phase are

h(ω) = |H(ω)| =
√
A2 +B2

A2 + C2
, (2.152)

ϕ(ω) = Arg[H(ω)] = arctan

(
AB − AC

A2 +BC

)
, (2.153)
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so that H(ω) = h(ω)eiϕ(ω).

In Figure 2.12 we plot the amplitude and phase of the velocity trans-

fer function for acoustic frequencies from 100Hz to 1MHz assuming a silica

microsphere of radius R = 1.5 µm trapped with strength κ = 10 fN/nm in

air. On the same axes, we also plot two limiting cases for otherwise identical

parameters: 1) δ → 0, i.e. the only damping is from the Stokes contribution

γ(ω) → γ0 and the pressure gradient is ignored, giving

H(ω) =
γ0ω

γ0ω − i(mω2 − k)
=

ω

ω − iτp(ω2 − ω2
0)
, (2.154)

and 2) κ → 0 while also accounting for compressibility effects, i.e. the exact

solution for an unbound particle [77]. The transfer function developed in this

section is labeled simply “Basset” in Figure 2.12 even though effects of har-

monic confinement, added mass, and acoustic pressure gradient are accounted

for.

We see that our model interpolates between the low-frequency Stokes-

dominate solution and the high-frequency trap-independent solution. The

Stokes-only model applies to Brownian motion in air, but Basset-force cor-

rections become relevant in high-frequency acoustic fields. For example, at 1

MHz, the Stokes-only model underestimates the amplitude by a factor of ∼ 2

and overestimates the phase by ∼ π/6 radians. On the other hand, the Basset

model agrees very well with the exact model at 1 MHz since compressibility

effects may safely be neglected, though the fluid’s memory and inertia can not.

This Chapter has covered significant theoretical ground. Section 2.1 in-
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Figure 2.12: The transfer function (a) amplitude and (b) phase compared for
different models: Equation (2.148) is the black, solid line, Equation (2.154) is
the gold, dot-dashed line, and the exact solution for an unbound microsphere
including compressibility effects [77] is the orange, dashed line.

troduced the concept of optical trapping through ray optics, Rayleigh scatter-

ing of Gaussian beams, and most generally, the Mie scattering regime. Section

2.2 was purely mathematical; we defined stochastic processes and described

how to analyze the signals they generate. Special attention was given to the

power spectral density. Finally, Section 2.3 considered Brownian motion as a

stochastic process driven by thermal fluctuations and subject to hydrodynam-

ics and harmonic confinement. We verified our numeric routines for calculating

statistical quantities using simulated digitized signals. Furthermore, we lever-

aged the hydrodynamic theory to calculate the acoustic radiation force on

small spheres in the absence of thermal fluctuations. All of the results pre-

sented in this chapter are standard but lead into the two key results of this

dissertation presented in Chapter 4. Specifically, 1) in thermal equilibrium, fit-

ting the position power spectral density reveals the inertial mass of an optically
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trapped microsphere. 2) When perturbed by an acoustic wave, the velocity

transfer function provides a means of making quantitative, high-bandwidth

measurements of the perturbing field. Before detailing these results, we next

describe the apparatus and equipment used to make the measurements.
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Chapter 3

Experimental set-up

This Chapter details the experimental apparatus used for equilibrium

inertial mass measurements and acoustic sensing. Figure 3.1 provides a basic

block diagram. At the highest level of abstraction, the experiment operates in

a pulsed mode with two synchronized digitizers for reading data. One digitizer

is faster (GaGe 1622 up to 200 MHz sampling rate) and one is slower (National

Instruments 6259 up to 2 MHz sampling rate). Synchronization is provided

by an external clock source (Stanford Research Systems DS345.) The fast

digitizer collects signals from primary sensors like the microsphere’s position

or a reference microphone. The slower digitizer collects signals from auxiliary

sensors like the trapping laser power and air temperature. Multiple nearly-

contiguous acquisitions, each referred to as a record, may be made from a single

external trigger. It is useful to split the data into a collection of records at

the level of data acquisition (instead of in post-processing) for organizational

reasons. Each record may be considered an independent realization of identical

measurements and therefore makes up an ensemble to average. Furthermore,

the data stream from the slow digitizer is averaged over time for each record.

It is instructive to walk through an example of an acquisition sequence
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NI 6259

Figure 3.1: The experimental apparatus is represented as simplified blocks.
One personal computer (PC) runs a custom LabView control loop. User input
(red arrows) is sent to the fast digitizer and the NI control card to set up acqui-
sition parameters. User input is also sent directly to the experiment and the
loop waits for the update to complete (e.g. setting a new laser power) before
arming the acquisition triggers. At the next rising edge of the synchroniz-
ing clock, the digitizers simultaneously begin their independent acquisitions
(dark blue arrows). Simultaneously, stimuli may be sent to the experiment
while data is being acquired (green arrows). After all the requested data has
been collected, it is transferred to the control PC (light blue arrows). The
data is optionally saved to an external storage device and subsequently loaded
to a (possibly different) PC (purple arrows) for analysis with custom Python
libraries.
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to understand how the data is organized. Set the fast sampling rate to fs,1 =

25MHz and the slow sampling rate to fs,2 = 250 kHz. Collecting N1 = 216

samples per record at fs,1 corresponds to a record time of Tr = 2.6ms. For

the slow digitizer to collect over the same amount of time, the control loop

will automatically set N2 = Trfs,2 = 650 (rounded to the nearest integer).

Since the slow digitizer records the experimental conditions like temperature

and laser power that we expect to change on time scales much longer than Tr,

each such record is averaged over all N2 points per record. Collecting M = 10

records per collection means that the external clock frequency should be set

to ftrig ≤ (MTr)
−1 = 38Hz. Finally, the control loop can run multiple trials

of a collection with the same experimental parameters or loops over several

varying control parameters. The data is optionally saved to an external drive

in the LabView TDMS format that may then be opened in Python (npTDMS

library) for further analysis.

The remainder of this Chapter is organized as follows: First, in Section

3.1 we describe the optical trapping setup and microsphere position detection

scheme. Then, in Section 3.2 we describe our method for releasing and trapping

individual microspheres. Finally, in Section 3.3 we discuss the various acoustic

sensors and sources used in the sound detection experiment.

3.1 Optics and alignment

We now turn to a description of the optics used for trapping, monitor-

ing, and exciting a microsphere.
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Figure 3.2: Laser table schematic. The optical trap is formed by a 1064 nm
continuous-wave laser split into two counter-propagating beams and focused
by identical aspheric lenses. Two photodiodes are used to monitor each beam’s
input power (PF and PB). An additional photodiode monitors the backward
beam’s output power (PB’). The forward beam is used to detect the micro-
sphere’s motion by splitting its wavefront and detecting the power imbalance
between each beam half. A 633 nm HeNe laser is used for visible-wavelength
imaging. A 532 nm, 5 ns pulsed laser is used to ablate an aluminum target
and generate acoustic impulses.

85



Figure 3.2 depicts a schematic of the laser table setup. The trap

is formed by a continuous-wave, 1064 nm laser (Innolite [now a Coherent]

Mephisto). The Mephisto consists of a monolithic Nd:YAG crystal in the non-

planar ring oscillator configuration, capable of up to 1.2 W of output. Using

the built-in noise eater, the output is shot-noise limited above ∼ 1MHz. Light

exits the laser head and its power is adjusted by manually tuning a half-wave

plate in front of a polarizing beam splitter. Then, a beam-expanding telescope

and a 10 µm diameter pinhole form a spatial filter that provides a collimated

Gaussian mode with a diameter of 3.6mm.

A second half-wave-plate-polarizing-beam-splitter pair is used to split

the beam into two parts. The s-polarized component (the one reflected by

the beam splitter) is referred to as the forward beam. The forward beam is

sampled using a pick-off mirror and measured with a photodiode (PF) so that

its power may be monitored during the experiment. Then, two mirrors divert

the forward beam through an aspheric lens (numeric aperture 0.7, Thorlabs

C330TMD-C), forming the first half of the optical trap. Meanwhile, the p-

polarized component passing through the beam splitter is called the backward

beam. The backward beam passes a beam-reducing telescope before entering an

acousto-optical modulator (AOM, IntraAction Corp ATM-801A6, with driver

ME-802). The AOM provides convenient intensity control of the backward

beam as well as an 80 MHz frequency shift relative to the forward beam.

A smaller input diameter improves the coupling efficiency through the AOM

(about 80% here). The backward beam is then expanded to 2.6mm, sampled

86



with a pick-off mirror for power monitoring (photodiode PB), and directed into

a second aspheric lens to from the second half of the trap. Cross polarization

and 80 MHz of relative detuning ensure interference does not affect the trap

potential.

Passing through the trap waist, both the forward and backward beams

are recollimated by the opposite aspheric lens. The backward beam retraces

the forward beam’s path until it hits the beam splitter that initially separated

the two beams. Here, the backward beam passes through the cube and is

sampled on a photodiode (PB’) for alignment purposes. The forward beam

emerges from the trap and is immediately separated from the backward beam

using another polarizing beam splitter. Once separated, the forward beam has

its power reduced using another half-wave-plate-polarizing-beam-splitter pair

before it enters the detection system.

For detection, the wavefront is split using a sharp D-shaped mirror

(Thorlabs BBD05-E03). The wavefront halves are diverted into the two ports

of a balanced photodetector (75 MHz bandwidth, Thorlabs PDB120C) whose

signal is proportional to the difference in optical powers between each half.

The cut mirror is mounted on a motorized stage (Thorlabs TDC001). Balance

is maintained over long periods by actuating the stage to zero the detector

signal between acquisitions. More details on the detection system are provided

in Section 3.1.2.

Figure 3.2 also depicts a simple imaging system. A 633 nm HeNe

laser beam (4 mW, Gaussian mode diameter 4mm) is directed colinear to the
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forward beam and into the trap. The forward beam’s final pre-trap mirror

is dichroic to let the 633 nm light pass. Light scattered from microspheres is

collected by a magnifying lens and imaged onto a complementary metal-oxide-

semiconductor camera (CMOS, Thorlabs DCC1545M). The imaging system

helps while tapping microspheres and ensuring the trap is singly occupied.

Releasing and capturing microspheres is discussed further in Section 3.2.

Finally, Figure 3.2 shows a third laser (Quantel); it is a flash-lamp-

pumped, Q-switched, frequency-doubled Nd:YAG laser. The 532 nm wave-

length pulses are 5 ns long and fired at a repetition rate of up to 50 Hz.

Each pulse has a peak energy of up to 200 mJ and a flat-top mode shape.

A half-wave-plate-polarizing-beam-splitter pair controls the nominal pulse en-

ergy. Laser pulses are focused through a lens and onto an aluminum target

near the optical trap. The pulsed laser is not part of the trapping or mea-

suring system but is used to generate fast acoustic pulses via laser ablation.

The focusing lens and aluminum target are mounted on a motorized stage

(Velmex MA1515K2S1.5) to control the distance between the acoustic source

and the optical trap. Additionally, the target has circular symmetry and may

be rotated around its axis using a stepper motor (Newport 8401). By rotating

the target between shots, a fresh surface may be ablated for each trial. In

Chapter 4 we show the microsphere’s response to such an acoustic impulse as

well as other non-laser-based sound sources that may be mounted on the same

motorized stage.

A few optics are not shown in Figure 3.2. Neutral density filters re-
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duce the optical power entering the photodiodes PF, PB, and PB’ so that

the sensors do not saturate. A 633 nm rejecting line filter is placed at the

forward beam’s trap exit so that only the 1064 nm forward beam enters the

detection system. Additionally, the power-reducing beam splitter in the detec-

tion system has an unused port. This port may be unblocked, the wave-front

rotated by 90 degrees using a dove prism [80], and then sent to an identical

detection system. By rotating the beam front, this detection system is sensi-

tive to the microsphere’s motion in the transverse direction orthogonal to the

depicted detection system, thereby enabling two-dimensional tracking of the

microsphere. Alternatively, the dove prism may be removed and a home-built

high-saturation-power balanced detector may be swapped for the commercial

balanced detector. Our home-built system has superior sensitivity [35, 81],

but is AC coupled and therefore requires a careful calibration transfer from

the DC-coupled, lower-sensitivity commercial detector. For the experiments

reported on in Chapter 4, only one commercial detector is used to track the

motion in one dimension for simplicity and proof-of-principle.

Connecting to the language of Figure 3.1, we identify the balanced

detector as a primary sensor. The three photodiodes are auxiliary sensors. The

two linear stages, one rotary stepper motor, and the pulsed laser’s flash lamp

energy are actuated by the control PC between acquisitions. The pulsed laser’s

flash lamp and Q-switch may be triggered during an acquisition. Additionally,

the temperature is tracked using a platinum resistance thermometer (Omega

RTD-3-F3102-36-T, read by Lakeshore 211). The sensor head is mounted in
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free space near the optical trap.

While most of the optical components depicted in Figure 3.2 may be

aligned using standard methods, special attention is required to align the

counter-propagating beams through the trap lenses. In the next section, we

will describe the alignment techniques employed for reliable and repeatable

trapping.

3.1.1 Pinhole alignment

Recall in Section 2.1 we found that a ∼1 µm silica sphere near the

intensity maximum of a tightly focused beam experiences significant scatter-

ing forces leading to unstable trapping in the longitudinal direction. We also

saw how an additional counter-propagating beam can stabilize the trap by

applying an equal and opposite scattering force. In practice, the two counter-

propagating beams must be aligned very accurately. Otherwise, the scattering

forces do not cancel and can instead drive an out-of-equilibrium circulating

motion [82, 83]. While it is often stated that the trapping position is midway

between the two trapping beams’ foci, the stable point of a dual-beam opti-

cal trap introduces additional subtleties: up to four stable trapping positions

may be found along the optical axis [84, 85]. For these reasons, reliable and

repeatable alignment of the two counter-propagating beams is required. This

section is devoted to a detailed description of our alignment procedure.

The aspheric lens focusing the forward beam is housed (Thorlabs E09RMS)

and mounted (Thorlabs HCS013) on a fixed aluminum block. The backward
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beam’s aspheric lens is similarly mounted on a three-axis translation stage

(Thorlabs MBT616D). Alignment is performed in two stages of increasing ac-

curacy. The first step is to bring both beams and aspheric lenses onto the

same optical axis as a one-to-one telescope. In the second step, alignment is

refined using a pinhole between the two lenses to set a common point through

which both beams are focused.

Figure 3.3: The transverse profile of the (a) forward and (b) backward beams
just before entering the trap. These images were captured with the beam
profiler software and edited for aesthetics in post-processing. Care was taken
to ensure the position scales remain accurate.

The first step in the alignment is to set the optical axis as the forward

beam. A beam profiler (Thorlabs BP109-UV) should show a clean, and un-

changing Gaussian mode as it is translated parallel to the laser table’s hole

pattern. The fixed aspheric lens must then be placed in the beam line. Trans-
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lating the beam profiler just downstream of the lens’ focus should show a

growing-but-otherwise-unmoving Gaussian mode. Then the translation-stage-

mounted aspheric lens is brought into the beam line. If both lenses are well

aligned, the downstream beam profile should look the same whether or not

the trap lenses are installed. Additionally, as the kinematic lens is translated

along the optical axis, the downstream profile should change in size but not

position or symmetry. Finally, the backward beam is aligned through the trap

lenses such that its downstream profile looks the same whether or not the trap

lenses are installed. Figure 3.3 shows the beam profiles of the forward and

backward beams just before they enter the trap.

The second step in aligning the optical trap is to ensure both beams

are focused through the same point using a pinhole. Figure 3.4 (a) shows

a 3D rendering of the optical trap components set up for pinhole alignment.

Between the two lenses sits an L-shaped aluminum platform. The long arm

of the L extends underneath the trap and the short arm is mounted to a

three-dimensional translation stage (Thorlabs NanoMax 300) equipped with

piezoelectric actuation for fine-tuning (Thorlabs MDT693B open loop piezo

controller). Two screws secure a custom pinhole clamp to the long end of

the L. The clamp has a V-shaped groove to increase the placement accuracy

when installing or changing pinholes. Figure 3.4 (b) depicts the technical

drawing used to machine the pinhole clamp. Efforts must be made to align

the pinhole axis to the translation axis of the stage and the optical axis of

the trap. Once installed, the pinhole stage’s micrometers are adjusted so
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that the forward beam’s throughput is maximized. The maximization can be

done using the signal from the split beam detector after fully retracting the

cut mirror. Then, the throughput of the backward beam is maximized by

adjusting three micrometers of the kinematic lens’ stage and monitoring the

signal from the backward beam’s post-trap photodiode (PB’). It is helpful to

first align a larger (20µm) pinhole and then switch to a smaller (5 µm) pinhole.

We have been unable to find a signal using an even-smaller 2 µm pinhole.

(a) (b)

Figure 3.4: (a) Rendering of the optical trap set up for pinhole alignment.
(b) Technical drawing of the removable pinhole clamp, including details of the
V-shaped groove.

The pinhole stage’s piezo driver is computer controlled and can be

raster-scanned in three dimensions. Scanning the pinhole and simultaneously

recording the signals from the post-trap photodiodes reveals an approximate

map of the light field inside the trap. These maps are approximate because
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Figure 3.5: By scanning a 5 µm pinhole in the vicinity of the trap center, we
approximately measure the trap’s intensity distribution. 25× 25× 10 = 6250
points (10 points along z) were measured over 20µm3 volume. (a - c) Slices
of the forward beam’s intensity distribution. (d - f) Slices of the backward
beam. All slices are taken through the intensity maximum (normalized to
unity). The intensity maximum of the forward beam sets the origin of the
coordinate system.
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Figure 3.6: Line-cuts of the data shown in Figure 3.5(c) and (f). Gaussian
fits (solid lines) estimate the trap waists and alignment accuracy for the (a) x
direction and (b) y direction.
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no account is taken for diffraction effects even though the pinhole diameter

is on the order of the waist and wavelength of the trapping light. Cyclically

measuring the trap profile and making small adjustments to the translatable

aspheric lens’ position enables our most sensitive alignment check. Once both

foci are coincident, the backward beam is translated along the optical axis such

that the two foci are separated by about 25µm. In our experience, slightly

separated foci more reliably trap a single microsphere at a time.

Table 3.1: The fitting parameters corresponding to the solid curves in Figure
3.6. Reported uncertainties are purely statistical; they are the diagonal entries
of the fitting parameter covariance matrix (as returned by the Scipy non-
linear least squares fitting function curve fit) to the one-half power. Due
to diffraction effects, the actual waists are likely smaller than the measured
waists.

w0 (µm) q0 (nm)

Forward
x 3.56± 0.11 129± 65
y 2.39± 0.04 −384± 23

Backward
x 3.34± 0.05 152± 30
y 4.31± 0.14 −445± 84

Figure 3.5 shows two-dimensional slices of an alignment scan and Fig-

ure 3.6 shows one-dimensional transverse line-cuts through the intensity max-

imum. The signal from each beam is normalized by its maximum value. Fur-

thermore, the zero of the coordinate axes for both beams is taken as the

intensity maximum of the forward beam. Fitting the normalized transverse

line cuts to the form e−2(q−q0)2/w2
0 provides a basic estimate of the trap waist w0

and alignment offset q0 along the coordinate q ∈ {x, y} for both the forward

and backward beams. A summary of the fit parameters is reported in Table
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3.1. Using the scanning pinhole method, we can reduce the alignment offset to

within a couple-hundred of nanometers. More precise alignment adjustments

would require piezo actuation of the lens that is not currently available in our

setup.

3.1.2 Split-beam detector

In this Section, we explain how the split beam detector works and

estimate the voltage signal given a displacement of the microsphere. Then we

consider sources of noise and their effects on measurements.

In Section 2.1.1 we saw how a microsphere offset from the focus of

converging light rays experiences a restoring force back towards the focus.

An additional effect is also apparent in Figure 2.1: When the microsphere is

displaced from the optical axis, the primarily-transmitted rays deflect in the

same direction as the microsphere’s displacement. In the case of a dual beam

optical trap, the deflected rays are collected and re-collimated by the counter-

propagating beam’s focusing lens. The collimating lens converts the angular

deflection to a lateral offset. Measuring the offset of a trapping beam after it

passes the microsphere provides a measurement of the microsphere’s position.

The cut mirror and balanced detector achieve this measurement.

Internally, the balanced detector consists of two photodiodes wired in

the push-pull configuration. In this configuration, the power imbalance P2−P1

between the two photodiodes generates a proportional photocurrent. The

proportionality constant is called the responsivity and is Q = 0.7A/W at
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1064 nm. Proportionality is only guaranteed if the input power is less than the

saturation threshold Psat = 20 µW. A high-gain and low-noise transimpedance

amplifier converts the small photocurrent difference into a large voltage signal.

The transimpedance gain is A = 180×103V/A. When the microsphere moves

a distance x the detection power P = P2 + P1 is imbalanced by an amount

P2 − P1 = GxP where G is a geometric factor with units of inverse length.

Precise calculation of G requires Mie scattering theory, but in the Rayleigh

approximation one finds [86] G ∼ λ−1D3/w3
0 where D = 2R is the microsphere

diameter, w0 is the trap waist, and λ the trapping wavelength. Conversely,

in the ray optics picture, the microsphere is much larger than the wavelength

of light, so the wave properties at length-scales λ drop out of the problem.

Dimensional analysis then suggests G ∼ D−1. In our experiment D ≈ 3 µm,

w0 ≈ 4 µm, and λ ≈ 1 µm, so it is reasonable to expect G ≈ 1 µm−1 within

a factor of 10. Combining the above considerations leads to an estimate for

the detector position calibration factor relating the detector voltage V and the

microsphere position x:

β =
V

x
= GPQA . (3.1)

Setting P = Psat we estimate β ≈ 2.5mV/nm. In Chapter 4 we will describe

a method for measuring β based on Brownian motion in thermal equilibrium.

Now that we understand how the balanced detection system works, a few

comments regarding noise are in order. First, we discuss noise due to signal

digitization then we focus on noise originating from the laser.

A digitizer used L bits bk ∈ {0, 1}, k = 0, 1, . . . , L − 1 to encode each
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voltage measurement V = Vlow +Q
∑

k bk2
k where Q = (Vhigh − Vlow)/2

L is the

conversion resolution, and Vlow = −Vhigh set the conversion’s full-scale range.

The bit string {bk} represents the voltage V . Due to the finite resolution of

digitization, quantization error is introduced into the measured signal. In an

ideal measurement, the signal occupies the full-scale range while quantization

noise is confined to the least significant bit.

Of course, a digitizer also samples discretely in time at a rate fs. Addi-

tional digitization error occurs from timing inaccuracies known as jitter. Small

fluctuations in the sampling period δt = 1/fs can lead to errant measurements,

especially for signals with high slopes. Quantization error, jitter, and other

noise sources are combined into a digitizer’s figure of merit known as the effec-

tive number of bits L′. We estimate the uncertainty in voltage measurements

as half the conversion resolution evaluated with L′1. For the GaGe 1622 digi-

tizer, L′ = 11.4. Hence for a full-scale range of ±1V , we find a measurement

uncertainty 601 µV. Bin averaging M uncorrelated measurements [see Equa-

tion (2.52)] reduces the uncertainty due to digitization by a factor M−1/2.

The fastest resolvable signal must contain frequencies no larger than

the Nyquist frequency fs/2. Signals with frequencies greater than the Nyquist

frequency will be aliased. In an aliased measurement high-frequency power will

be incorrectly folded down to lower frequencies. Aliasing can be minimized

by using a sampling rate fs much larger than the highest signal frequency of

1Thermal Johnson noise (1 µV for 50Ω at 1MHz) is often smaller than digitization noise
(31µV for 16 bits at 2V full scale) and therefore neglected here.
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interest fmax. We further low-pass filter the signal before digitization at a

cutoff frequency fc such that fmax ≪ fc ≪ fs. Typical values for the GaGe

1622 digitizer in our experiment are fs = 25MHz and fc = 4MHz (Crystek

CLPFL-0004-BNC).

The laser beam used to detect the microsphere’s motion is subject

to a variety of noise sources. Thermal noise in the laser head causes slow

power drifts on the scale of seconds. Relaxation oscillations — an effect due

to the quantized energy levels of the laser’s gain medium — cause power

fluctuations on the scale of microseconds. Both of these effects are mitigated by

the laser’s built-in noise eater and the common-mode rejection of the balanced

photodiodes.

On the other hand, pointing instability of the laser and mechanical

vibrations throughout the system are not common-mode and therefore con-

tribute to the detection noise. Mechanical vibrations are minimized by mount-

ing the system on a monolithic air-lifted optical table and setting the optical

axis of the system relatively low (4 inches above the table). Additionally, the

optical setup is enclosed in a multi-chamber acrylic box to minimize airflow and

stabilize temperatures. The intrinsic pointing instability of the laser is quite

low [87]. However, 60Hz power line harmonics cause additional peaks in the

noise spectrum that appear to manifest as pointing instabilities. Sometimes,

audible acoustic noise can also be identified in the noise spectrum.

Even a perfect laser source is subject to shot noise due to the quantized

nature of light. If the photons comprising the detected laser beam are of
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frequency ω0 and are detected at time ti then the incident power is P (t) =

ℏω0

∑
i δ(t− ti). Denote the average incident power as P̄ . Using properties of

delta functions and definition (2.65) for the power spectral density gives [88]

SPP (ω) = P̄ 2δ(ω) + P̄
ℏω0

2π
. (3.2)

The first term represents the average signal power while the second represents

uncorrelated (white) shot noise. Hence the relative uncertainty due to shot

noise decreases as ∼ P̄−1/2. Increasing the average power reduces the shot

noise, but the saturation threshold of the detector’s photodiodes limits the

utility of this approach (though significant gains can be made [81] compared

to the commercial detector used here). A promising alternative method uses

structured light fields to reject the symmetric part of the detection beam that

contains most of the optical power and none of the particle’s position informa-

tion [89]. No matter how it is reached, shot noise defines a fundamental noise

floor that can only be surpassed by using a squeezed light source [90,91].

The noise due to the detection electronics alone is called dark noise.

The noise due to the detection electronics and the laser system is called bright

noise. In Figure 3.7 we plot examples of the dark and bright voltage noise

power spectral densities for our system. The spectra are computed from N =

224 ≈ 8.4× 106 points sampled at fs = 25MHz (full range input ±500mV) for

a total record time of Tr = 336ms and averaged over 30 independent records.

The spectral resolution with these acquisition settings is approximately 3Hz.

While the origin and decomposition of the observed noise can be challenging

to determine, certain features may be quantified.
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Figure 3.7: Voltage power spectral densities for dark (blue) and bright (orange)
noise. (a) The full spectra on log-log-scale axes. The black dashed line depicts
1/f scaling and the solid black line depicts the bright-noise floor (computed
as the average value between 500 kHz and 1.5MHz and shown on all panels).
(b) A zoom of the low-frequency bright noise plotted on linear-scale axes. The
open symbols are the same data as in (a) and the solid lines are Lorentzian
fits and numbered according to the fit parameters in Table 3.2. (c) A zoom of
the high-frequency noise. The vertical line marks the anti-aliasing filter cutoff
frequency fc.
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At the lowest observed frequencies, both bright and dark spectra scale

as ∼ f−1. This so-called one-over-f noise or flicker noise is typical of most

measurement systems across disciplines [92]. Near the 100Hz-scale, the bright

noise is dominated by broad resonances with frequencies that correspond to

power-line harmonics and audible acoustics. These peaks are reasonably well

fit (simultaneously) by a sum of four Lorentzian line shapes

SV V (f) =
4∑
i=1

Ai
Γ2
i

(f − f0,i)2 + Γ2
i

. (3.3)

The fit values for each peak’s amplitude Ai resonant frequency f0,i and width

Γi are reported in Table 3.2. We find the details of these peaks can change over

time. For example, we often observe an additional peak near 237Hz that is

not seen in Figure 3.7. The 237Hz peak seems to originate from the building’s

chilled water pipes.

High-frequency noise is predominantly flat and interspersed with several

additional resonances. The high-frequency resonances are electrical in nature

and the noise floor is due to a combination of quantization noise, shot noise,

and any remaining high-frequency classical laser noise or detector noise. A

very simple noise model treats the observed noise spectrum as white and with

a magnitude given by the average high-frequency noise floor, denoted χ. The

bright noise floor (χ ≈ 2.4 × 10−7mV2/Hz) is only slightly higher than the

detector noise floor suggesting the shot-noise-limit may be within reach at high

frequencies. At frequencies above the anti-aliasing filter’s cut-off frequency fc

and below the Nyquist frequency fs/2, a lower noise floor is observed. This is
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Table 3.2: Results of un-weighted non-linear least-squares fitting of Equation
(3.3) to the low frequency bright noise data. Such fitting methods are ques-
tionable for spectra obtained as average-periodograms (See Section 2.2.4). The
results and uncertainties reported here are as given by Scipy’s curve fit that
incorrectly assumes Gaussian-distributed data. Nonetheless, the fit results
provide a convenient and easy way to quantify the observed low-frequency
noise without detailed modeling.

Peak i Ai (mV2/Hz) f0,i (Hz) Γi (Hz)
1 11.1± 0.3 59.4± 0.1 1.7± 0.1
2 8.9± 2.2 105.1± 0.1 1.4± 0.3
3 3.9± 0.7 119.9± 0.3 1.7± 0.4
4 3.7± 0.3 140.0± 0.3 2.1± 0.2

essentially the noise due to the digitizer, excluding the laser and detector noise.

As will be done in Chapter 4, care must be taken to analyze experimental data

in a bandwidth where neither the bright noise’s low-frequency resonances nor

high-frequency floor significantly pollute the recorded signal.

3.2 Microspheres

In this section, we will provide a few details on the microspheres used

in this work. We will also discuss our method for releasing single microspheres

in the vicinity of the optical trap.

3.2.1 Microsphere geometry

The silica microspheres we use were purchased with a nominal diame-

ter of 3.17 µm (Bangs Laboratories SSD5001). They are manufactured using

the Stöber process [93] that is known to produce highly mono-dispersed and
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spherical particles. We quantitatively assess our microspheres’ geometry by

imaging a sample of them with scanning electron microscopy. Image analysis

reveals the size and shape distributions of the sample. An example image is

shown in Figure 3.8 (a).
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Figure 3.8: Silica microspheres and their geometry. (a) An example scanning
electron microscope image. (b) The probability density (black steps) and a
Gaussian fit (red line) of radius measurements made by analyzing 10 images
like that shown in (a). (c) The probability density (black steps) and an expo-
nential fit (red line) of aspect ratio measurements.

We measured the radius of the imaged spheres using the Particle Sizer

plugin [50] for the Fiji distribution of ImageJ, an open-source image analysis

software. We operated the plugin with default settings and in “single particle

mode” to exclude touching and overlapping microspheres. Once an image

was analyzed, we manually excluded false positives by inspection. In total,

we measured 219 spheres and fit the histogram of measured radii to a one-

dimensional Gaussian probability density. Figure 3.8 (b) depicts the histogram

and its fit. The fitting procedure yields the sample mean µR = 1.511 µm and

standard deviation σR = 0.044 µm. Hence the relative uncertainty in the

microsphere size is σR/µR = 2.9%. Our measurement provides a marked
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improvement over the manufacturer-stated relative uncertainty of 10%. The

measured radius is slightly smaller than the manufacturer’s claimed radius of

1.585 µm.

Using similar image analysis techniques, we also measure the aspect

ratio a/b ≥ 1 of the microspheres. The probability distribution of the measured

aspect ratios and its fit to an exponential distribution is shown in Figure 3.8

(c). From the fit, we find the mean of ϵ = a/b− 1 is µϵ = 0.028. At this level

of asphericity, corrections [94] to the Stokes drag γ0 = 6πηR are below 1% and

therefore ignorable compared to the uncertainty in R.

While the Stöber process does indeed produce highly spherical and

mono-dispersed microspheres, their density can vary significantly. In Chap-

ter 4 we will describe our Brownian-motion-based method for determining a

trapped microsphere’s density for inertial mass sensing. For now, we move on

to describe our method for releasing microspheres.

3.2.2 Launching single microspheres with ultrasonic vibration

The silica glass microspheres we purchase are delivered as a dry pow-

der. As is apparent in Figure 3.8 (a), the microspheres tend to form clus-

ters. They also adhere to a silica glass coverslip when pressed. The force

required to separate two adhered microspheres is Fsphere−sphere = 2πCR where

the material-specific constant C is called the effective solid surface energy [95].

Separating two 1 µm-diameter silica spheres takes about 88 nN [96], so we es-

timate C ≈ 28 nN/µm. Separating a sphere from a flat surface requires twice
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as much force [95]: Fflat−sphere = 4πCR, or ∼ 176 nN for a 1 µm-diameter silica

sphere on a silica substrate. Thus we conclude that releasing microspheres from

a glass coverslip very likely releases single microspheres since it takes about

twice as much force to separate them from the substrate than from each other.

Accelerating a microsphere-coated coverslip at a = Fflat−sphere/m ∝ R−2, where

m is the mass of the microsphere, should release single microspheres into the

air. For a 1 µm-diameter silica sphere the required acceleration is immense:

a ≈ 1.8× 108m/s2.

Piezo

Gate
driver

8 mF8 mF

5 Ω

15 Ω

 0 V - 230 V

Figure 3.9: Schematic circuit used to generate high power pulses. Also shown
is a rendering of the piezo element and clamping system from the top (upper
rendering) and side (lower rendering). The body of the clamp is made of copper
and is electrically grounded to the pulse generator. The positive terminal is
constructed from a flat copper wire that is isolated from the clamp body by
the glass slide. A number 2 coverslip dosed with microspheres is epoxied to
the end of the glass slide.
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Our system for launching microspheres is depicted schematically in Fig-

ure 3.9. The system relies on a resonantly driven piezoelectric element (piezo,

APC International 70-2221) clamped to a glass slide with a microsphere-coated

cover slip epoxied to its end. The purpose of the cover slip is to increase the

oscillation amplitude and therefore increase the acceleration. The piezo man-

ufacturer claims a high resonant frequency of ∼344 kHz. The displacement —

and hence acceleration — of the piezo is proportional to the voltage across it.

When driven on resonance the electrical-to-mechanical coupling is maximized

and therefore so is the acceleration.

We measured the small-signal acceleration of the microsphere launching

system using a laser Doppler vibrometer (Polytec PSV-500). In this experi-

ment, the drive frequency is chirped from DC to 1MHz while the vibrometer

measures the acceleration of the coverslip. The ratio of the acceleration’s

spectrum to the drive-chirp spectrum, shown in Figure 3.10, identifies a peak

acceleration of 7× 104 (m/s2)/V at a resonant frequency of 348 kHz. By using

a chirp, high spectral resolution is achieved, but only ∼16mV is applied per

frequency bin and for insufficient time for the oscillations to reach steady-state.

The steady-state acceleration is likely higher by about a factor of 10 [97].

On resonance, the piezo’s impedance reduces to just a few Ohms.

Therefore, high voltage resonant drive demands high current. To meet these

demands we operate a custom-built high-power pulse generator [98], also shown

in Figure 3.9. In the high-power pulse circuit, two large capacitors (8 mF, Digi-

key 338-1236-ND) store an electric charge that can be delivered to the piezo.
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Figure 3.10: Ultrasonic microsphere launching system’s small-signal accelera-
tion, measured near the center of the coverslip using a laser Doppler vibrom-
eter. The red circle marks the peak acceleration.

The capacitors are maintained at a constant voltage using a supply of up to

300V (TDK Lambda 300-5). A high-power metal–oxide–semiconductor field-

effect transistor (MOSFET, Vishay IRFPS40N50L) switches the current on

and off at the frequency set by a square wave function generator (Stanford

Research Systems DS345). A pulse generator gates the function generator so

that high-power pulses of a known duration can be applied on demand. Since

the MOSFET has a large input capacitance (8110 pF), we must drive its gate

with a high-power, high-speed gate driver (Microchip TC4422).

The ability of the system to release microspheres depends on several

control parameters like the capacitor charging voltage, the oscillation fre-

quency, and the oscillation duration. In practice, we find that highly efficient

release of microspheres can be achieved for a variety of control parameters. A

typical sequence for a freshly-dosed cover slip is as follows. First, at a low volt-
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age of 5V to 20V and a duration set to a large value of 100ms, several pulses

are delivered at frequencies ranging from 342 kHz to 348 kHz. These initial

pulses serve to break up small clumps of microspheres and also shake off large

clumps that are only weakly bound to the cover slip. Then, to attempt to

release and trap microspheres, we reduce the pulse length to 10ms and slowly

increase the voltage until a stream of microspheres visibly falls through the

HeNe laser, as seen by the naked eye or the imaging camera, typically between

30V to 60V. At this point, we find it helpful to drift through the parame-

ter space of drive frequency and pulse duration until either a microsphere is

trapped or microspheres no longer appear to be releasing. In the case of the

latter, the drive voltage is increased. It can also be helpful to slightly reposi-

tion the coverslip with respect to the trap or tighten the screws clamping the

glass slide to the piezo. If the system is well aligned, we find roughly 1 in 10

trapping attempts succeed.

The apparatus described here for launching microspheres is essentially

the same as that built in our group nearly a decade ago [98] and another

recently investigated in more detail [97]. Launching microspheres with diam-

eters less than one micrometer via ultrasonic vibration may be achieved by

using a polytetrafluoroethylene-coated glass slide [99]. An alternative method

uses laser-induced acoustic desorption [100]. In this method, a laser pulse is

focused onto the back side of a metal substrate whose front side is dosed with

microspheres. The sudden absorption of optical energy sources a shockwave

in the substrate that can launch the microspheres. We use similar methods
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to generate acoustic impulses that are detected in the microsphere’s motion.

Moving toward our acoustic detection results, we next describe the various

acoustic sensors and sources used in our experiment.

3.3 Acoustic sensors and sources

One of the primary results of this work is to measure acoustic fields by

monitoring the movements of an optically trapped microsphere. Our acous-

tic detection methodology will be covered in detail in Section 4.2. There, we

will use two types of sound sources and two types of acoustic detectors to vali-

date our microsphere-based measurements. This section specifies the technical

details of these sources and detectors.

3.3.1 Microphone and Microflown

In Section 2.3.4 we saw how the conservation of mass and energy in

a fluid lead wave solutions in the fluid’s velocity and pressure. Therefore, an

instrument sensitive to a fluid’s pressure or velocity could be used to detect

sound waves. We use both types of detectors for the following reasons. Owing

to the microsphere’s small size and hence small inertia, its motion is sensitive

to high-frequency sound waves. The highest-bandwidth commercially available

acoustic detectors measure pressure. On the other hand, our microsphere is

primarily sensitive to acoustic velocity, not pressure, but acoustic velocity

sensors are not commercially available at high bandwidth. Therefore, we will

compare the results of our microsphere-based acoustic sensor to both a high-
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bandwidth pressure microphone and a calibrated acoustic velocity sensor.

A familiar pressure-sensitive instrument is a microphone. Most mi-

crophones operate under the same working principle: A small (millimeter to

centimeter scale) cavity is sealed with a tight membrane, setting the cavity’s

internal pressure. When a sound wave’s pressure field changes the external

pressure, the membrane flexes in response. Measuring the membrane’s de-

flection, usually by electrical means, provides a signal linearly-related to the

sound pressure. Usually, a small hole in the backside of the cavity allows the

pressure differential to equalize over time scales long compared to any acoustic

signals of interest. Such venting lower-bounds the microphone’s measurement

bandwidth.

A microphone’s sensitivity is the ratio of the output voltage to the in-

put acoustic pressure. A membrane has many intricate vibrational modes that

can make the sensitivity a complicated function of frequency. The bandwidth

of a microphone is typically upper-bound by the membrane’s first resonant

frequency so that the sensitivity is constant or slowly varying with frequency.

High-quality microphones are amplified so that the sensitivity is as constant

as possible. Inevitably, higher bandwidth microphones are smaller and un-

der more tension so that the first resonant frequency is high. High tension

comes with a trade-off of low sensitivity since a tighter membrane must be

driven harder to achieve the same displacement as a looser membrane. Addi-

tionally, microphones are either free-field -type or pressure-type. A free-field

microphone is calibrated so that it measures the acoustic pressure field as if
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the microphone was not present. A pressure-type microphone measures the

actual acoustic pressure on the membrane.

In our measurements, we use a state-of-the-art high-bandwidth (cali-

bration range 10Hz to 200 kHz) pressure microphone (GRAS 46DE with 12BA

power module). The entire sensor, including the preamplifier, is less than 1/8-

inch in diameter, making it the smallest measurement microphone set in the

world [101]. Figure 3.11 shows our microphone’s sensitivity curve sp(f) as

provided by the manufacturer, including their corrections for free-field con-

ditions at normal incidence and the protective grid removed. A pistonphone

calibration unit (GRAS 42AG) provides a standardized way to set the sensi-

tivity at a single sound level and frequency since the sensitivity may change

slightly with environmental conditions like temperature and humidity. The

frequency-dependent sensitivity can then be re-scaled to match the one-point

measurement provided by the pistonphone. We have never measured a sensi-

tivity different from the manufacturer-stated value of 0.68mV/Pa at 250Hz.

Contrary to microphones the Microflown2 detects the velocity wave of

an acoustic field [102, 103]. The Microflown operates on the principle of hot-

wire anemometry. In the Microflown, two nanometer-scale platinum wires are

fixed parallel to one another and separated laterally by a couple of microns.

Both wires are driven with current such that their temperature is approxi-

2Sometimes microflown is used as a generic name for a velocity-sensitive acoustic sensor.
We choose to refer to the instrument as a proper noun because its inventors started the
company called Microflown Technologies and sell the Microflown as a product.
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Figure 3.11: Microphone sensitivity sp(f) for frequencies from 250Hz to
200 kHz. The open circles are the data points provided by the manufacturer
and the solid line is our cubic interpolation of the data that enables evaluation
of the sensitivity at arbitrary frequencies. The dashed line shows the cubic
interpolation of the sensitivity without the manufacturer-provided corrections
for free-field, protective-grid-removed conditions.

mately 500K. In the absence of flow, both wires have the same temperature.

When air flows across the wires, advection imbalances their temperature by an

amount proportional to the flow speed. Accurately measuring the temperature

imbalance is possible due to the highly temperature-dependent resistance of

platinum. Though the velocity-sensitive wires are themselves small, the unit is

housed in a 1/2-inch diameter package, making it somewhat bulky compared

to our microphone. The high-frequency sensitivity of the Microflown is limited

by diffusive heat transfer between the wires as well as their finite heat capac-

ities. At low frequencies, the sensitivity is limited by thermal-boundary-layer

and packaging effects [104].

The Microflown is calibrated up to 20 kHz by the manufacturer by
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fitting their sensitivity measurements to

g(f) =
g0√
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where g(f) is the sensitivity amplitude and ψ(f) is the sensitivity phase. The

complex sensitivity is su(f) = g(f)eiψ(f). Table 3.3 reports the fit values for

g0, fi and Ci, i = 1, 2, 3, 4. Figure 3.12 plots the amplitude and phase of the

sensitivity over the calibration range.

Table 3.3: Our Microflown sensitivity fitting parameters provided by the man-
ufacturer

Quantity Value Unit
g0 11.4 V/(m/s)
f1 22 Hz
f2 595 Hz
f3 5 456 Hz
f4 142 Hz
C1 16 Hz
C2 570 Hz
C3 22 551 Hz
C4 142 Hz

To make calibrated acoustic measurements with either available sen-

sor, one may record a voltage signal V (t) and then filter the result in post-

processing according to the relevant sensitivity s(f). Introducing the notation

F(·) for the Fourier transform and F−1(·) for its inverse, the signal in physical

units x(t) is

x(t) = F−1

{
F[V (t)]

sx(f)

}
, (3.6)
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Figure 3.12: Our Microflown’s sensitivity (a) amplitude and (b) phase.

where x = p corresponds to a pressure measurement with the microphone and

x = u corresponds to a velocity measurement with the Microflown. To eval-

uate Equation (3.6), one must know the sensitivity sx(f) at the frequencies

corresponding discrete Fourier transform x̃k = x̃(fk). This is possible through

the Microflown’s fitting functions (3.4) and (3.5) and the microphone’s inter-

polating function (plotted in Figure 3.11). Since we only know the sensitivity

for frequencies f > 0 and the measured signal is purely real-valued, we use the

one-sided Fourier transform (Scipy’s rfft and irfft) to evaluate Equation

(3.6).

3.3.2 Piezoelectric speakers and laser ablation

This Section details the devices used to generate sound to test our

microsphere as an acoustic sensor. We use two piezoelectric speakers and laser

ablation.

One of the piezo speakers has a resonant frequency of 40 kHz (Mu-
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rata MA40S4S). For a given drive voltage, the sound pressure generated by

the speaker falls off by about 20 dB re 20 µP per 5 kHz of detuning from res-

onance. The second piezo speaker has a resonant frequency of 4 kHz (TDK

PS1240P02BT). The frequency response of the 4 kHz piezo is more intricate,

exhibiting a sharp drop below resonance and additional peaks above resonance.

For example, the sound pressure at 3 kHz is approximately 35 dB re 20 µP be-

low that of resonance while the sound pressure at 10 kHz is only 20 dB re 20 µP

below that of resonance3. Both speakers are driven directly by a computer-

controlled function generator (Agilent 33250A). The LabView control loop en-

ables the application of pure tones or tone bursts at voltages of up to 10Vp− p.

Tone bursts may be delayed with respect to the acquisition trigger.

The optical setup used for laser ablation, described in Section 3.1, pro-

vides a source of sharp acoustic pulses. A pulsed laser focused to a small spot

on an interface or within a medium can deposit a vast amount of energy in

a short amount of time. This phenomenon has myriad technical applications

from micro-machining [105] to laser-induced-breakdown spectroscopy [106] as

well as more general studies of light-plasma interactions [107]. Even within the

sub-field of pulsed-laser acoustics, the literature spans numerous applications

like non-contact damage detection [108], medical imaging [109], and scale-

modeling of sonic booms [110]. As an acoustic source, at least two regimes

are present depending on the laser’s pulse energy. At lower energies, in the

3The frequency response characteristics reported here were estimated from the corre-
sponding product data-sheet.
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thermo-elastic regime, the sudden deposition of heat causes a rapid increase

in temperature and therefore expansion, leading to an acoustic wave [111].

At higher energies, in the ablative regime, solid substrates may be vaporized

leading to a sudden ejection of mass that sources a shock wave [112]. A shock

wave is a non-linear fluid phenomenon4 in which highly compressed zones

travel faster than the bulk medium’s sound speed while the rarefied zones

travel slower. Unlike linear acoustics, the different travel speeds at different

points on a shock wave’s profile lead to distortion and a rapid loss of ampli-

tude [114]. We operate our system in the ablative regime to generate sound

pulses with high-frequency content.

Our LabView control program communicates with our pulsed laser in

two ways. RS-232 serial communication is used to issue commands and read

responses in between acquisitions. Commands may be issued, for example, to

set the flash lamp energy (and hence the pulse energy), set the internal-trigger

repetition rate, or read the system’s temperature. When enabled, the program

will automatically warm up the laser to a desired operating point (around

39 °C) by operating at a high energy and repetition rate. Alternatively, digital

pulses for the flash lamp and Q-switch may be sent to trigger laser pulses on

demand and at a well-defined time with respect to an acquisition.

4Non-linearities in fluids are often thought of as the velocity advection term in the
Navier–Stokes equations. Here the non-linearity arises from how a medium’s comprehensi-
bility depends on its pressure [113]
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Chapter 4

Results

We come now to a description of the experiments undertaken with the

apparatus described in Chapter 3 and using the tools developed in Chap-

ter 2. The results are organized into two major sections each with differing

viewpoints on Brownian motion and each undertaken with slightly different

methodologies.

In Section 4.1 we report the results of a measurement campaign devoted

to determining the mass of an optically trapped microsphere. These results

have been published in [115] under the title Weighing an optically trapped mi-

crosphere in thermal equilibrium with air. In [115], the statistical properties of

Brownian motion are leveraged to deduce the trapped microsphere’s mass in

three ways. To compare the methods fairly, and to compare ours to alternative

methods from the literature, much effort is expended on careful characteriza-

tion and error analysis. We find that measuring the instantaneous velocity

variance provides an accurate and precise mass measurement using a fraction

of the data required by alternative methods.

In Section 4.2 the perspective is shifted. Here, we measure the micro-

sphere’s motion when subjected to a sound field. Many approximations are
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made to deduce the sound field in proper physical units. Despite the rela-

tive simplicity of our analysis techniques, adequate agreement with traditional

sensors is observed within the limits of their sensitivity and bandwidth. We

then take a step beyond traditional sensors and attempt to measure sound

fields with the frequency content outside their bandwidth. Again, it is the

microsphere’s velocity degree of freedom that enables our measurements.

In the inertial mass sensing experiment, Brownian motion is the signal

while in acoustic detection, it is noise. In both cases, the (essentially) white

thermal noise spectral density is filtered by the microsphere’s inertia. At

angular frequencies beyond the inverse momentum relaxation time 2πf >

τ−1
p , velocity fluctuations decay as f−2 [See Equation (2.130)]. In the case

of acoustic detection, it is true that the microsphere’s inertia also reduces

its mechanical responsivity at high frequencies. However, acoustic waves at

high frequencies are necessarily high energy: If a medium oscillates with an

amplitude d at angular frequency 2πf , its kinetic energy scales as f 2.

We turn now to a discussion of the weighing results. Much of the prose

is adapted from [115], but all the data and figures have been recompiled for

the present document.

4.1 Trap calibration and inertial mass sensing

Optical trapping of nano- and micro-scale objects [12, 21] has become

a paradigmatic tool in diverse fields, from micro-manipulation of biological

samples [20, 22, 116–124] to center-of-mass cooling experiments [34, 125, 126]
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aiming to observe macroscopic quantum effects [127–131], to metrology exper-

iments [132–134] with optomechanical sensing applications [135–139].

Many such applications must monitor the trapped particle’s position

as a function of time, so a position-sensitive detector must be calibrated. We

have estimated our split-beam detector’s calibration constant in Section 3.1.2,

but in practice, one must measure the calibration factor for each experiment.

Such measurement-based calibration usually requires knowledge of the trapped

particle’s mass [132]. However, silica nano and microspheres, often the object

of study in levitated optomechanics experiments, do not have a readily-known

mass. Indeed, the Stöber process used to manufacture these particles [93]

yields very spherical results with a low dispersion of radius, as demonstrated

in Section 3.2, but their mass density can vary by over 20% [140, 141]1. Cal-

culated with these values, the uncertainty in mass is about 22%. For this

reason, recent work has focused on mass metrology of nano and microspheres

optically trapped in vacuum using methods of electrostatic levitation [141], os-

cillation [133], and trapping potential nonlinearities [134], and, most recently a

drop-recapture method performed in air [142]. The mass uncertainty achieved

in each of these experiments is at the level of one to a few percent. Each

has unique advantages like no assumptions on particle geometry, and distinct

challenges, e.g., control of the particle’s charge, accurate modeling of local

potentials (gravitational, electric, or optical), or vacuum capabilities including

1The mass density variation is due to pores in the microspheres, so the actual density is
lower than that of bulk silica.
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feedback cooling.

Here, we demonstrate a mass metrology experiment with uncertainty

similar to previous work but performed on a 1.5 µm radius silica microsphere

optically trapped in air [143] at room temperature and pressure. Our experi-

ment employs a dual-beam optical trap [12,144], described in detail in Chapter

3. Our system remains in thermal equilibrium at all times making for a simple

protocol. Moreover, we explore two distinct methodologies leveraging our de-

tector’s high spatiotemporal resolution. First, in our spectral method, we fit an

average voltage signal power spectral density to simultaneously extract param-

eters that make no assumptions on the physical conditions of the experiment.

We then fix conditions known with high accuracy — the air temperature T , air

viscosity η, and particle radius R — to compute the harmonic trap strength

κ, microsphere mass density ρ, and detector calibration factor β, as well as

the uncertainties and correlations of these parameters. The microsphere mass

is similarly calculated by combining fitting and fixed parameters.

In the second equipartition method, we compute the voltage signal and

voltage-derivative signal variances from which we deduce the particle mass in

two additional ways. Doing so requires a detector with sufficient resolution

to observe the particle’s instantaneous velocity, pioneered in [34, 81]. The

equipartition methods additionally require knowledge of either the harmonic

trap strength κ or calibration factor β which must be determined via the

spectral method first. The spectral method demands a high volume of data

to sufficiently smooth the experimental power spectral densities and is in that
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sense slow. The equipartition methods, once an initial spectral calibration is

performed, require 10× shorter data traces to achieve similar uncertainty in

subsequent mass measurements.

All the data presented in this section were collected while monitoring

a single trapped microsphere. To check for systematic bias in our method, we

have recorded data at 14 different trapping laser powers P = PF + PB where

PF is the power of the forward beam and PB is the power of the backward

beam. The ratio PF/PB = 0.8± 0.1 is held approximately constant. P ranges

from 4.8mW to 257mW. At each power, we collect n = 40 records of the

voltage signal, each Tr = 84ms long, at a sampling rate of fs = 50MHz and

full-scale input of ±1V. In post-processing, the signals are low-pass filtered by

bin-averaging averaging together non-overlapping blocks of M = 256 samples

for improved spatial resolution [Equation (2.52)]. The new effective sampling

rate is 195 kHz. We compute the experimental voltage power spectral density

ŜV V,k = ŜV V (fk) using Bartlett’s method [Equation (2.89)]. Now let us see

how voltage power spectral densities may be used to characterize our system.

In what follows, we first rigorously characterize our system in Section

4.1.1. Then, the mass measurement techniques are described in Section 4.1,

followed by a discussion of the results in Section 4.1.3.

4.1.1 Power spectral density parameter estimation

In thermal equilibrium, the position power spectral density of the mi-

crosphere’s motion is given by Equation (2.129). On the other hand, the detec-
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tor’s voltage signal V (t) is related to the microsphere’s position x(t) through

Equation (3.1) as V (t) = βx(t). Therefore, the (one-sided) theoretical voltage

power spectral density is

SV V (ω) = β2 4kBTγ0
(mω2 − κ)2 + γ20ω

2
. (4.1)

Once a set of trials is collected, we fit the experimental data ŜV V to the model

SV V (f ;θ) =
1

a+ bf 2 + cf 4
, (4.2)

wherein we have defined the column vector of free parameters θ = (a, b, c)T.

The fit is performed using the maximum likelihood estimation method [145–

147], as described in Section 2.2.4. In fact, the minimization of the negative-

log-likelihood ℓ(ŜV V ;θ) [Equation (2.93)] with respect to θ can be very accu-

rately approximated analytically and implemented numerically [146], thereby

providing good start values for the minimization.

In the end, the minimization provides the best fit parameters θ̂ =

(â, b̂, ĉ)T that maximize the likelihood of the data given the model: L(ŜV V ;θ) =

exp
[
−ℓ(θ, ŜV V )

]
. In Figure 4.1 (a) we show experimental power spectral

densities and their best-fit curve for two different trapping laser powers. In

Figure 4.1 (b) we consider the data-to-fit ratio’s probability distribution and

compare it to the expected unit-mean Erlong distribution, provided by re-

scaling Equating (2.91),

PŜV V /SV V
(z) =

nn

(n− 1)!
zn−1e−nz . (4.3)
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Figure 4.1: (a) Example voltage power spectral densities (open symbols, aver-
aged over geometrically-spaced frequency bins for visualization purposes) and
their fits (solid lines) for high (purple) and low (gold) trapping laser powers.
The vertical dashed lines represent the upper (black, shared) and lower (color-
coded by trap power) frequency bounds used for the fits. The solid black line
shows the bright noise of the detection system with no frequency-bin averag-
ing. (b) The probability density of the ratio between the data and fit from
(a) (filled histograms). The solid black line corresponds to the universally-
expected Erlong distribution. The dashed black line corresponds to a Gaus-
sian distribution with the same variance 1/n as the Erlong distribution, where
n = 40 is the number of averaged experimental spectra. The inset shows the
same ratio but when the fit is performed after only n = 1 spectral average and
the Erlong distribution reduces to the exponential distribution.

124



a/â
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Figure 4.2: Visualizing the likelihood L for (a) low (6.1mW) and (b) high
(234mW) trapping laser powers. For this visualization, we plot isosurfaces
taken at Gaussian widths of 3-sigma (purple), 2-sigma (blue), and a core from
the maximum likelihood (red) to the 1-sigma-width (green). Further, we have
cut the data cloud in half to better visualize the isosurfaces. The quality and
quantity of parameter correlations appear to depend on the trapping laser
power.

As n increases, the distribution becomes more Gaussian-like, but a non-Gaussian

bias remains clear even for n = 40.

To measure the fitting parameter’s uncertainty and correlation, and

inspired by the profile likelihood method [145,147], we scan θ in the vicinity of

θ̂ over a volume of parameter space to build up a three-variate distribution L.

Figure 4.2 visualizes example results of such a parameter scan. The parameter

scans may be fit to a three-variate Gaussian distribution

PG(θ; θ̂,Σθ) = exp

[
−1

2
(θ − θ̂)TΣ−1

θ (θ − θ̂)

]
. (4.4)

The vector θ̂ resulting from the fit is taken as the best-fit parameter set. The

matrix Σθ resulting from the fit provides the variance-covariance matrix of the
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Figure 4.3: (a) The relative uncertainty in parameter θi found at each trapping
laser power. The divergence observed for σb/b̂ near P = 25mW is due to the
zero crossing seen in the inset. (b) Correlations among the power spectral
density fitting parameters.

fitted parameters:

Σθ =

σ2
a σ2

ab σ2
ac

σ2
ab σ2

b σ2
bc

σ2
ac σ2

bc σ2
c

 .

The uncertainty in parameter θi is σθi = ([Σθ]i,i)
1/2 for i ∈ {1, 2, 3} and the

correlation coefficient between parameters θi and θj is rθi,θj = [Σθ]i,j/(σθiσθi),

for i ̸= j ∈ {1, 2, 3}. Figure 4.3 visualizes the relative uncertainties and

correlations found for θ = (a, b, c)T at each trapping laser power.

The fitting parameters θ may be used to deduce a more physical set of

parameters: trap strength κ, microsphere density ρ, and calibration constant

β. Each of the physical parameters Θ = (k, ρ, β)T are functions of the fitting

parameters θ and constant parameters R, T , and η. That is, Θ = Θ(ϕ),

where we have defined the vector of independent variables ϕ = (θ, R, η, T )T.
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For explicit formulae, we find

k(ϕ) = 12π2ηR

√
a

b+ 2
√
ac
, (4.5)

ρ(ϕ) =
9η

4πR2

√
c

b+ 2
√
ac
, (4.6)

β(ϕ) =

√
6π3ηR

kBT

1√
b+ 2

√
ac
. (4.7)

The set of fixed parameters was chosen to propagate the least uncer-

tainty to the physical parameters. As already discussed, R is known to within

a few percent. The temperature may be easily measured with sub-Kelvin ac-

curacy so the uncertainty in T is mostly due to fluctuations in temperature

during an acquisition. Across the entire collection campaign, the temperature

varied by less than 0.8K. The viscosity of air is primarily temperature de-

pendent [148], exhibiting a relatively weak ∼ T 1/2 scaling. Further corrections

for relative humidity, taken as a constant 50% throughout the collection cam-

paign, slightly improve the theoretical accuracy of η to less than 0.1% 2 [149].

A large swing of 50% relative humidity changes η by less than 1% while a

swing of 1 K in temperature changes η by even less.

In light of the above uncertainty considerations, the variance-covariance

matrix of the independent variables may be approximated in the block-diagonal

form Σϕ = diag(Σθ, σ
2
R, σ

2
η, σ

2
T ) where we have estimated ση = 0.18 µPa s and

2In our original publication [115], only temperature dependence was accounted for. We
now have humidity sensors so that we may refine the set value of viscosity for each exper-
iment. Retroactively analyzing the published data including effects of typically-observed
humidity negligibly changes the published results.
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σT = 0.8K. Relative uncertainty in R (∼ 3%) dominates that of T (∼ 0.3%)

and η (∼ 1%). The block diagonal form assumes measurement correlation ex-

ists only between the fitted parameters. Then, the variance-covariance matrix

of the physical parameters in terms of the fitting and constant parameters is

given by the error propagation equation [150]

ΣΘ = JΘΣϕJ
T
Θ . (4.8)

By definition, the Jacobian matrix evaluated at the optimal fitting parameters

is (JΘ)i,j = [∂Θi/∂ϕj]θ=θ̂. Further defining

u1 =
3

16π3R3
, u2 =

1

2
√
6πηRkBT

, (4.9)

d1 = b+ 2
√
ac , d2 = b+ 2

√
ac , (4.10)

lets us express the Jacobian as

∂Θ

∂ϕ
=

6π2ηR√
ad32

× d1 −a −
√
a3/c 2ad2/R 2ad2/η 0

−u1c −u1
√
ac u1d1

√
a/c −4u1d2

√
ac/R 2u1d2

√
ac/η 0

−u2
√
c −u2

√
a −u2a/

√
c u2d2

√
a/R u2d2

√
a/η −u2d2

√
a/T

 .

(4.11)

The square root of the diagonal entries of Equation (4.8) are then our

best estimate for the uncertainty in physical parameters Θ = (κ, ρ, β)T. In

Figure 4.4 we plot the best-fit parameters with error bars. As expected, the

trap strength [Figure 4.4 (a)] scales linearly with the total trapping laser power.

Fitting a straight line provides the scaling κ/P ≈ 0.18 (fN/nm)/mW. The
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Figure 4.4: (a) Trap strength, (b) microsphere density, and (c) detector cal-
ibration constant deduced by voltage power spectral density fits. In (a), the
solid black line is a linear fit. In (b) and (c) the solid black line marks the
mean value over all trapping laser powers.

microsphere density ρ [Figure 4.4 (b)] is independent of power within the

measurement’s uncertainty.

On the other hand, the calibration factor β [Figure 4.4 (c)] shows a

clear non-monotonic trend with trapping laser power. One might expect heat-

ing effects at higher laser powers could explain β’s trend, but our result’s

non-monotonicity makes such an explanation unlikely. Indeed, the calibration

factor and the temperature both primarily scale the overall power spectral

density (4.1) multiplicatively without changing its shape (except for effects

due to viscosity’s temperature dependence). Thus, we conclude heating of

the microsphere due to the laser is inconsequential because of the strong en-

vironmental coupling. This is not the case for experiments in vacuum [151].

Moreover, we find the observed trend in β is reproducible when the power-

scan experiment is repeated with different microspheres, suggesting the source

β’s variation could be slight beam deviations caused by the half-wave-plate-
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polarizing- beam-splitter pairs used to control the trapping and detected pow-

ers. Such beam deviations could change the geometric factor entering the

theoretical prediction for β [Equation (3.1)]. Nonetheless, we see our rough

estimate β ≈ 2.5mV/nm is accurate within a factor of 2, which is quite an

acceptable agreement considering the estimate relied on simple dimensional

arguments.
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Figure 4.5: (a) The position of a silica microsphere undergoing Brownian mo-
tion subject weak (κ = 2 fN/nm, gold) and strong (κ = 44 fN/nm, purple)
harmonic confinement. The experimental results (open symbols) and theo-
retical predictions (solid curves) are shown for the (b) position probability
density, (c) position power spectral density, (d) normalized position autocor-
relation function, and (e) mean squared displacement.

As a further cross-check of our results, we can also compute the other

statistical quantities defined in Section 2.3.3. Figure 4.5 shows the position
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statistics of experimentally-observed Brownian motion, in analogy to the sim-

ulation data shown in Figure 2.10. Results are shown for the same high and

low trapping laser powers as in 4.3. Similarly, the velocity statistics are shown

in Figure 4.6.
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Figure 4.6: (a) The velocity of a silica microsphere undergoing Brownian mo-
tion subject weak (κ = 2 fN/nm, gold) and strong (κ = 44 fN/nm, purple)
harmonic confinement. The experimental results (open symbols) and theo-
retical predictions (solid curves) are shown for the (b) velocity probability
density, (c) velocity power spectral density, and (d) velocity autocorrelation
function.

We observe excellent agreement between the data and corresponding

theoretical predictions upon characterizing our system through power spectral

density analysis. The velocity statistics are better predicted than the position
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statistics because the troublesome low-frequency noise does not as significantly

pollute the velocity data. Figure 4.6 (c) clearly shows the velocity variance due

to Brownian motion is larger than the variance due to noise near the 100Hz

band. Meanwhile Figure 4.5) (c) shows the variance due to low-frequency

noise is comparable to that of Brownian motion near the 100Hz band. Herein

lies the power of spectral analysis: we conveniently remove the effect of low-

frequency noise in the voltage signal by setting the frequency bounds of the

fit, as exemplified in Figure 4.3.

We have now established how to characterize an optically trapped mi-

crosphere through analysis of the detector’s voltage power spectral density.

We next leverage our well-characterized system to measure the mass of the

optically trapped microsphere in three ways.

4.1.2 Mass measurements

Upon learning power spectral density fitting parameters, it is straight-

forward to estimate the mass using the density and radius of the microsphere

as m1 = 4πρR3/3. However, the equipartition theorem, kBT = mσ2
ẋ = κσ2

x,

provides two additional possibilities: m2 = kBT/σ
2
ẋ and m3 = κσ2

x/σ
2
ẋ Explic-

itly, the three mass measurements m = (m1,m2,m3)
T written in terms of the
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augmented independent variables ϕ′ = (a, b, c, σ2
V̇
, σ2

V , R, η)
T read

m1(ϕ
′) = 3ηR

√
c

b+ 2
√
ac
, (4.12)

m2(ϕ
′) = 6π3ηR

1

σ2
V̇
(b+ 2

√
ac)

, (4.13)

m3(ϕ
′) = 2π2ηR

σ2
V

σ2
V̇

√
a

b+ 2
√
ac
. (4.14)

All three measurements are independent of temperature T .

The benefit of m2 and m3 is that, once a power spectral density fit

calibrates the system, further data can be collected to estimate the variances

σ2
V̇
and σ2

V , which may be used to update the mass measurement if it changes

with time. Of course, there is nothing to update if the mass is unchanging

like in our power-scan experiment. Nonetheless, to make use of methods m2

or m3, we must make an adequate estimate of the variances. We deduce a

signal’s variance by creating a histogram of its mean-subtracted values and

least-squares fitting a Gaussian distribution (2.86) with variance as the only

free parameter. Figure 4.7 (a)-(b) shows the position and velocity (propor-

tional to V and V̇ , respectively) histogram fits for signals of length τ = 0.3 s

(i.e. 4 of the 40 available records) at both high and low trapping laser powers.

The uncertainty in voltage and voltage-derivative variances must be

quantified and propagated to m2 and m3. The systematic uncertainty due

to digitization is negligible compared to that caused by noise in the system.

Hence, for error propagation, we take a statistical approach to measuring the

systematic uncertainty. In particular, we take the histogram fit’s covariance
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Figure 4.7: (a) Position histogram (open circles) computed from 0.3 s of data
for weak (gold) and strong (purple) traps and shown on semi-logarithmic axes.
Error bars reflect the standard deviation across 10 trials. The solid lines are
Gaussian fits with variance as the only free parameter. (b) As in (a) but for
the velocity degree of freedom. (c) relative Allan deviation stability analysis.
Error bars reflect the standard deviation across three trials. The red line marks
the thermally-limited trend τ−1/2.

134



matrix added in quadrature with the fluctuations observed across 10 trials per

trapping power. Note this is a slight abuse of the distinction between system-

atic and statistical uncertainty. For this study we use “statistical” uncertainty

for fluctuations observed in parameters across trapping laser powers and “sys-

tematic” uncertainty for the values used in error propagation at each laser

power.

How much data should be used to compute the variance? For an un-

correlated voltage signal of length τ , the uncertainty in estimating its variance

scales as τ−1/2, which is a thermally-limited trend. However, at short times

(τ < τp), the data are correlated due to the microsphere’s ballistic dynamics.

At long times, slow drifts in the system tend to pollute the signal’s variance.

One way to quantify the optimal amount of data to use for computing the

variance is the Allan-deviation stability analysis [60,61,132,138].

The Allan deviation is the square root of the Allan variance, Equation

(2.60). For a variance stability analysis, we compute the relative Allan devia-

tion of V 2 as AV 2(τ)/σ2
V,opt. Intuitively, the relative Allan deviation measures

the variability in variance measurements from signals of length τ compared to

the variance σ2
V,opt found using a signal of optimal length, i.e. the variance of

a length-τ0 signal where τ0 is the Allan-minimum averaging time.

Figure 4.7 (c) shows the results of our Allan deviation experiment,

performed three times at 22.8 mW of trapping laser power. This test was

performed with the same microsphere as the power-scan experiment but with a

much lower sampling rate of fs = 20 kHz. The low sampling rate allows for long
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(Trec = 14m) records within the limitations of the digitizer’s onboard memory.

On the downside, such a low sampling rate prohibits us from computing the

voltage derivative signal. However, within the harmonic-trap approximation,

the Allan-minimum averaging time should be identical for the voltage variance

and the voltage-derivative variance [132]. According to our Allan deviation

analysis, the system is stable out to about 30 s, so using 0.3 s of data for

estimating the variances allows for 100 independent mass measurements before

the slow drifts demand re-calibration of the apparatus. It is in this sense that

methods m2 and m3 are faster than m1.
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Figure 4.8: Comparing our three methods for inertial mass sensing.

In Figure 4.8 we show the results of our three mass measurement pro-

cedures. We find µm1 = 24.6 pg, µm2 = 25.1 pg, and µm3 = 27.3 pg where

the mean values µ are taken over the 14 experiments at different total trap-

ping laser powers. Reported error bars are calculated from the power spectral

density fit’s covariance matrix and uncertainties in both variances and fixed

parameters Σϕ′ = diag(Σθ, σ
2
σ2
V
, σ2

σ2
V̇

, σ2
R, σ

2
η). Specifically, error bars for the
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mass measurements are given by the square root of the diagonal entries of Σm

where

Σm = JmΣϕ′JT
m , (4.15)

and the mass-measurement Jacobian is

∂m

ϕ′ =
6π2ηR√
ad32

× −v1c −v1
√
ac v1d1

√
a/c 0 0 v1d2

√
ac/R 2v1d2

√
ac/η

−v2
√
c/d2 −v2

√
a/d2 −v2a/

√
cd2 −v2

√
ad2/σ2

V̇
0 v2

√
ad2/R v2

√
ad2/η

v3d1 −v3a −v3
√
a3/c −2v3ad2/σ2

V̇
2v3ad2/σ2

V 2v3ad2/R 2v3ad2/η

 ,

(4.16)

for which we have defined

v1 =
1

4π2
, v2 =

π

σ2
V̇

, v3 =
σ2
V

σ2
V̇

. (4.17)

As mentioned above, we refer to such error bars as systematic uncer-

tainty, denoted σsys.
mi

, i = 1, 2, 3. The statistical uncertainty (or fluctuation),

denoted σstat.
mi

, is calculated as standard deviation across the 14 experiments.

Measurementm1 has the smallest relative error bars (3.2% when averaged over

the 14 experiments) and the smallest relative statistical uncertainty (0.9%).

Measurement m2, which supplements the power spectral density analysis by

estimating the voltage-derivative variance in the time domain, agrees well with

m1, albeit with average relative error bars at 4.3% and relative statistical fluc-

tuations at 1.6%. The benefit of m2 is that, once an initial power spectral

density analysis is performed, parameters like mass (or temperature) can be

subsequently updated 10 times faster than collecting data for additional m1

measurements. Measurement m3 has the largest systematic and statistical
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relative uncertainties, 6.8% and 4.2% respectively. Furthermore, method m3

displays an additional systematic error in that it deviates from m1 and m2 by

nearly 10%. The bias in m3 may be traced to the excess time-domain variance

originating from the noise in the ∼ 100Hz± 70Hz band.

For comparison, the mass according to the manufacturer values of den-

sity ρBangs = 2.0 g/cm3 (σρBangs
/ρBangs = 20%) and our radius measurement

R = 1.51 µm, (σR/R = 2.9%) is mBangs = 28.8 pg with an uncertainty of 22%,

which agrees with all our mass measurements within the uncertainty tolerance,

despite the discrepancy in mean values.

4.1.3 Discussion

A recent experimental effort [133] measured the mass of R = 0.143 µm

silica spheres, optically trapped in vacuum, to be 4.01 fg with 2.8% uncertainty

using 40 s of position data. Their oscillating electric field method does not

assume any particular particle shape or density, though a density of 2.2 g/cm3

agrees with their measurements. In [141], a 2.6 µm radius sphere is optically

trapped and levitated with a static electric field as the trapping laser power

is reduced, resulting in a mass measurement of 84 pg with 1.8% uncertainty

using 42 minutes of data. The density is also measured to be 1.55 g/cm3

with 5.2% uncertainty. A third strategy used in [134] stabilizes oscillations

of a 0.082 µm radius sphere in the nonlinear-trapping regime to deduce the

detector calibration constant with 1.0% uncertainty and a mass of 3.63 fg

with 2.2% uncertainty. Finally, very recent work [142] used a drop-recapture
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method and camera-based detection with a time resolution that could not

quite resolve the microsphere’s instantaneous velocity. Fitting position au-

tocorrelation functions, they measure their resin particle’s radius to be 2.3

µm with 4.3% statistical uncertainty. In the drop-recapture experiments, 90

s worth of trials are used to deduce a mass of 55.8 pg with 1.4% statistical

uncertainty and 13% systematic uncertainty. The authors combine the radius

and mass measurements to deduce a density of 1.1 g/cm3 with 9.1% statistical

uncertainty.

As a comparison, we present a summary of our inertial mass sensing

parameter values and uncertainties in Table 4.1. Based entirely on thermal

equilibrium analysis, our two most accurate mass estimates have uncertainties

of 3% to 4% as compared to the 1% to 2% uncertainty in vacuum-dependent

and 13% in the air-based, nonequilibrium methods. Further, all of our mea-

surements are made with significantly shorter position data traces: Our spec-

tral method m1 used a total of 3 s of position data while our equipartition

methods m2 and m3 used 0.3 s of position data. Interestingly, our density

measurement has comparable accuracy to the recent body of work using silica

particles, all of which sourced particles from the same manufacturer. The vari-

ability and apparent radius dependence of measured density values underscore

the parameter’s uncertainty inherent to the manufacturing process.

Most of the existing mass sensing methods have been demonstrated

in a high vacuum environment where the experimental goals center around

ground-state cooling or exceptionally sensitive force transduction. Addition-
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ally, the existing methods rely on forces external to the trap, often driving

the system out of equilibrium and limiting their utility as environmental sen-

sors. Our method has the advantages of speed in that between 10× and 100×

less data are required compared to other methods; environmental coupling,

which unlocks future sensing applications; and simplicity in that no additional

experimental setup is required beyond trapping and monitoring.

Disadvantages include the requirements of environmental coupling, enough

spatiotemporal resolution to resolve the instantaneous velocity, and accurate

knowledge of the particle’s radius and medium’s viscosity. While an advantage

for future applications, environmental coupling critically limits the heating ef-

fects of the trapping laser and enables fast equilibration with the environment,

so our method could face complications in vacuum-based experiments. Instan-

taneous velocity resolution enables our fastest measurement, m2, but can be

much more difficult in a liquid environment, though certainly possible [81,89].

The trapped particle’s geometry was quantified statistically in our experiment,

but less uniform samples could significantly alter the error analysis. In such

cases, in situ measurements of the trapped particle with optical microscopy,

light scattering, or autocorrelation function analysis could improve the error

budget. Finally, knowledge of the air’s viscosity is quite reliable. On the other

hand, a liquid’s viscosity is more sensitive to temperature changes, and addi-

tives like glucose used in biophysics experiments or sodium chloride used in

Casimir force measurements [152] can introduce additional uncertainties.

Error analysis and comparison to equilibrium Brownian motion theory
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Table 4.1: Table of values and uncertainties. Reported values are the average
over the power scan experiment, except for κ and σ2

V for which we report the
range since these quantities scale with P . Also reported are the relative sys-
tematic uncertainties (sys.) averaged over the power scan experiment and the
statistical uncertainties (stat.) that express the relative standard deviation
over the power scan, where applicable. For κ, the reported statistical uncer-
tainty is the average relative residual with respect to the linear fit shown in
Figure 4.4 (a).

Quantity Value
Uncertainty (%)

Unit
sys. stat.

R 1.51 2.9 - µm
η 18.172 0.1 0.03 µPa s
T 295.50 0.3 0.05 K
σ2
V̇

0.46 2.3 - mV2/µs2

σ2
V (3.29× 10−4, 0.02) 5.3 - V2

κ (0.64, 45.6) 3.4 2.4 fN/nm
ρ 1.71 6.0 1.0 g/cm3

β 1.68 1.8 5.5 mV/nm
m1 24.6 3.2 0.9 pg
m2 25.1 4.3 1.6 pg
m3 27.3 6.8 4.2 pg
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has elevated our optical trapping apparatus to a well-characterized tool for

environmental sensing applications. In the next section, we take a step toward

demonstrating such environmental sensing by testing our system as an acoustic

detector.

4.2 Acoustic sensing

Several properties make optically trapped microspheres attractive de-

tectors: They are small, easily perturbed, and hence locally sensitive; they

are mechanically un-tethered; their position may be monitored with high spa-

tiotemporal resolution; and their operation is feasible in vacuum, gaseous,

and liquid environments. Several experiments have demonstrated the power

of optically-trapped-microsphere-based detection schemes including kinesin

molecule stepping [153], zeptonewton force sensing [136], state-of-the-art torque

sensitivity [154], absolute pressure and gaseous species identification [155],

ultra-fast viscosity measurements [89], Casimer force measurements [152], and

searches for new physics [156], including proposals to measure high-frequency

gravity waves [157]. There have also been many demonstrations of optically

trapped microspheres used to measure low-frequency fluid flows [158–163].

In what follows, we describe and demonstrate a new sensing modality

for optical tweezers: acoustic detection. To this end, the remainder of this

Section is divided into three Subsections. First, in 4.2.1 we define the instru-

ment’s sensitivity and predict the magnitude of minimum-detectable signals.

Second, in 4.2.2 we validate our device by measuring tone bursts and compar-
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ing results with state-of-the-art commercially-available transducers. Third, in

4.2.3 we look beyond the bandwidth of the traditional sensors by measuring

impulsive sounds generated through laser ablation. Finally, in 4.2.4 we discuss

our results in the context of the most-similar work performed to date.

4.2.1 Calibration and predicted performance

Recall from Section 4.1.1 that the position calibration factor β, relating

the detector voltage and microsphere position through V (t)/x(t) = β, may be

accurately determined through spectral density analysis. Additionally, recall

from Section 2.3.4 the transfer function H(ω) = ṽ(ω)/ũ(ω) [Equation (2.148)]

relating the complex harmonic (Fourier) amplitude of the microsphere’s veloc-

ity ṽ(ω) to that of an external flow’s ũ(ω). Since ṽ(ω) = −iωx̃(ω), we have

a straightforward estimate for the sensitivity of our system to external flow

fields

s′u(ω) =
−iβH(ω)

ω
. (4.18)

Assuming plane-wave acoustic fields such that p/u = Z0, we may measure

acoustic pressures using the sensitivity

s′p(ω) = s′u(ω)/Z0 . (4.19)

The prime on s′ distinguishes the sensitivity of our microsphere-based system

from that of the microphone sp and the Microflown su, defined in Section 3.3.1.

Figure 4.9 compares the magnitude-sensitivities of our traditional acoustic

detectors to that of our microsphere. We see that |s′p| > |sp| except for a

region near 150 kHz and that |s′u| > |su| for all frequencies.
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Figure 4.9: Comparing the acoustic-detection sensitivity of our microsphere
system to (a) our pressure microphone, including free-field and protective-
grid-removed corrections and (b) our Microflown. For this visualization we
have set R = 1.5 µm, κ = 10 fN/nm, ρ = 1700 kg/m3, β = 1.7mV/nm. For air
at T = 300K and 50% relative humidity, we adopt the values η = 18.3 µPa s,
ρf = 1.17 kg/m3, and c0 = 346.3m/s.

To evaluate the transfer function H we must know the trap strength

κ and microsphere density ρ as well as the fluid’s viscosity η, density ρf , and

sound speed c0. The equilibrium Brownian motion calibration methods de-

scribed in Section 4.1.1 may be used to determine κ, ρ, and β. Conversely,

η, ρf , c0 may be determined with high accuracy for air using measurements

of temperature, relative humidity, and barometric pressure [149, 164]. Fur-

thermore, for a digitized record, the factor −i/ω appearing in Equation (4.18)

that converts between position and velocity is replaced by the reciprocal of

Equation (2.80). Once evaluated, the microsphere’s sensitivity formulae may

be used to convert voltage signals to acoustic measurements using Equation

(3.6).

Beyond sensitivity, an important quantifier of any sensor is its self-
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noise. Self-noise is the signal measured in the absence of a source. For our

microsphere, the self-noise is a combination of Brownian motion and noise in

the laser/detection system. The former is well modeled by the ideal Brownian

motion voltage power spectral density SV V [Equation (4.1)] and the latter by

a constant noise floor χ ≈ 0.24 µV2/Hz (at least for frequencies f ≳ 1 kHz).

Hence the velocity self-noise spectral density of our sensor according to Equa-

tion (2.78) is

Snn,u(ω) =
SV V (ω) + χ∣∣s′p(ω)∣∣2 = ω2Sxx(ω) + β−2χ

|H(ω)|2
(4.20)

Similarly, the pressure self-noise is Snn,p(ω) = Z2
0Snn,u(ω). Figure 4.10 (a)

plots the velocity and pressure self-noise power spectral density predictions.

It is clear that Brownian motion dominates the self-noise for f ≲ 105 Hz and

that the detection noise floor dominates for f ≳ 105 Hz. When Brownian

motion dominates, the self-noise is quite flat and near the DC value Snn,u(ω →

0) = 4kBT/γ.

The concept of band-limited variance [Equation (2.75)] suggests the cu-

mulative self-noise spectral density as an estimate for the frequency-dependent,

minimum-detectable acoustic signals:

umin =

√∫ f

0

df ′ Snn,u(2πf ′) , pmin =

√∫ f

0

df ′ Snn,p(2πf ′) . (4.21)

The predicted minimum-detectable signals are shown in Figure 4.10 (b).

Having established the operating principle and basic performance ex-

pectations, we next turn to tests of the microsphere as an acoustic detector.
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Figure 4.10: (a) The predicted self-noise spectral density for velocity (left axis)
and pressure (right axis, assuming plane-wave impedance). The dashed line
excludes the effects of the detection system’s noise floor. (b) The predicted
minimum-detectable acoustic amplitudes for velocity and pressure.

4.2.2 Tone-burst sound source

We have measured the response of our microsphere to acoustic bursts

of pure tones at frequencies 4 kHz and 40 kHz using the piezoelectric speakers

discussed in Section 3.3.2. Being only 1/8th inch in diameter, the microphone

is placed behind and slightly between the two trap lenses. The Microflown is

a bulkier 1/2 inch diameter and so is placed just below the trap lenses. Either

piezo speaker may be fixed to a motorized stage that translates parallel to the

sound’s propagation direction.

We collect 100 records of length Tr = 9.5ms at a sampling rate of

25MHz. Each record captures the response to one tone-burst pattern. We

repeat six such measurement cycles at 10mm-incremented source distances

x0. The minimum distance is 44mm. The source-distance scan is repeated

twice: once while measuring the microsphere and Microflown simultaneously
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and once while measuring the microsphere and the microphone simultaneously.

For this experiment, we were able to keep the same microsphere trapped while

manually swapping between the two piezo speakers.

Figure 4.11 shows the results for the 40 kHz speaker source-distance

scan. Our microsphere results appear to agree well with both commercial sen-

sors for shorter source distances and earlier times. It is possible that at further

distances scattering and diffraction break the homogeneity of the acoustic wave

at length scales comparable to the separation between the sensors. In other

words, the sensors may not be measuring the same acoustic field. Scattering

and diffraction could also explain why, since the microphone is placed closer to

the optical trap center than the Microflown, we see greater agreement between

the microsphere and microphone, Figure 4.11 (a), as compared to the micro-

sphere and Microflown, Figure 4.11 (b), even at the furthest source distances.

The data shown in Figure 4.12 are like that in Figure 4.11, but with the 4 kHz

piezo speaker. We find somewhat better agreement at further distances com-

pared to the 40 kHz piezo speaker, though the amplitudes are roughly 10×

smaller.

A more quantitative comparison of the early-time and short-distance

agreement is shown in Figure 4.13. So far, the results we have presented

reflect an ensemble average of 100 records, providing 10× noise reduction.

For Figure 4.14 we perform the same analysis as in Figure 4.13 but without

ensemble averaging. Indeed, a quite satisfactory agreement is observed even

with these 1-shot measurements.
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Figure 4.14: Single-shot tone-burst measurement comparison. We show a sin-
gle record from the ensemble averages shown in Figure 4.13. We also reduced
the bandwidth of the Microflown measurement from 200 kHz to 100 kHz to
suppress excess electronic noise in the 40 kHz tone-burst measurement.
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4.2.3 Laser-ablation sound source

Having validated our sound sensing methodology via tone-burst mea-

surements in the previous section, we now attempt to measure sounds with

significantly higher frequency content. Laser ablation of an aluminum target

provides an impulsive sound source for this purpose. As described in Chap-

ter 3, a 532 nm, 5 ns laser pulse is focused to about 75µm on an aluminum

target. Here, the pulse energy was set to approximately 10mJ. Between each

pulse, the target is rotated using a stepper motor about an axis parallel to,

but laterally displaced from, the incoming pulse. Rotating the target in this

way ensures a fresh target is ablated during each record of an acquisition. The

rotatable target, steering mirror, and focusing lens (100 mm focal length) are

all mounted on a platform that secures to the same motorized stage used to

translate the piezo speakers of the previous section.

We collect 10 records of an ablation signal, each 2.6 ms in length, at a

sampling rate of fs = 25MHz. After the 10 records are collected, the ablation

source is translated 2.1 mm further away. The minimum distance is 44 mm

and 30 such translations are performed, hence the maximum displacement is

104 mm. Simultaneous with recording the microsphere signal, we also record

the microphone signal. We do not report impulsive measurements with the

Microflown because it has insufficient sensitivity at high frequencies to make

reliable measurements. In post-processing, we lowpass filter the signals to the

desired bandwidth via bin-averaging. The microphone bandwidth is set to 200

kHz and the microsphere bandwidth is set to 1 MHz.
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Figure 4.15 shows the 10-record-ensemble-average ablation signals at six

source distances. At shorter source distances, the microsphere signal displays

structure not seen in the microphone signal, like a local minimum near the peak

pressure and another near the pressure zero-crossing. The microsphere signal

also displays higher noise, as seen before the signal’s primary rising edge, and

this is at least partially due to the ambitious 1 MHz bandwidth selected for

the analysis. The local minimum features are not noise because they are seen

propagated to later times at larger source distances. Signal noise is unique for

each acquisition and therefore would not cause propagating features. When

interpreting this data, we must bear in mind that the microsphere is sensitive

to acoustic velocity that we convert to pressure using the simplest possible

(plane-wave) impedance model. It is conceivable that, especially near the

ablation source, this impedance model is overly simplistic and the microphone

and microsphere sense quite different fields.

At the farthest observed source distance, the microsphere and micro-

phone signals agree more closely. It is typical in impulsive acoustics to find

highly structured near-fields and universal far-fields. Such universal impulse

waveforms, called N-waves after the shape of their profile, provide the ba-

sis for scale-modeling of sonic booms [110]. Figure 4.16 shows the N-shaped

profile measured by the microphone and microsphere at the furthest-tested

source distance x0 = 104mm. There, the microsphere signal is shown with a 1

MHz and 200 kHz bandwidth, the latter being the same as the microphone’s

bandwidth.
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We quantify the peak pressure as the signal maximum and the peak

rise time as the amount of time it takes for the signal’s leading edge to increase

from 10% of the peak pressure to 90% of the peak pressure. Figure 4.17 shows

the peak pressure and peak rise time for increasing source distance. Evidently,

reducing the microsphere’s measurement bandwidth to that of the microphone

in post-processing accounts for a significant portion of the difference in peak

features measured by the two sensors. The peak pressure decays with distance

as a power law. Upon reducing the microsphere’s bandwidth, the peak pres-

sure’s power law exponent is relatively unchanged, though its magnitude is

significantly reduced. Additionally, we find that reducing the microsphere’s

bandwidth by a factor of 5 increases the observed rise time by nearly the same

factor. This suggests the rise-time measurements could be band-limited, even

with a 1 MHz bandwidth.

4.2.4 Discussion

Combining the velocity transfer function from hydrodynamic theory

with equilibrium calibration techniques has enabled acoustic measurements

using our optically trapped microsphere system. Our technique is quite differ-

ent from the established standards for calibrating a microphone, i.e. measuring

the sensor’s response to a well-characterized source under anechoic conditions.

It is perhaps surprising, then, that our measurements agree at the level ob-

served in Section 4.2.2.

Our microsphere resolves larger peak pressures and shorter rise times
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Figure 4.17: Quantifying the acoustic peak generated by laser ablation. Sym-
bols are the average over 10 records and the error bars are the corresponding
standard deviation. (a) The peak pressure is well fit by the power law axb0
(solid lines). We find b = −1.3 for the microsphere and b = −0.51 for the mi-
crophone. Reducing the microsphere bandwidth to 200 kHz results in b = −1.2
(the dashed red line reflects the fit, data not shown for visual clarity). (b) The
10-90 peak rise times. Here, the solid lines reflect the average over source dis-
tances. These averages are 6.6 µs for the microphone, 4.1 µs for the microsphere
with a bandwidth of 200 kHz (dashed line, data not shown), and 0.9 µs for the
microsphere with a bandwidth of 1 MHz.
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compared to our high-bandwidth microphone. This indicates that the micro-

sphere’s sensitivity to high-frequency sounds enables measurements that can-

not be performed with our microphone, which has the highest commercially-

available bandwidth. Of course, the microphone’s sensitivity, seen in Figure

4.9, is engineered to have a very flat amplitude response up to the design

bandwidth, followed by a steep cutoff. This is achieved by engineering the mi-

crophone’s electronic amplifier system. Physically, the microphone membrane

has sensitivity beyond the design bandwidth, but it becomes increasingly chal-

lenging to maintain a flat response beyond the membrane’s first resonance.

To our knowledge, our work is the first demonstration of a new sensing

modality for optical tweezers. By monitoring the microsphere’s instantaneous

velocity in response to sonic, ultrasonic, and impulsive sounds, we infer the

motion of the fluid that is local to the microsphere. For the remainder of

this Section, we will outline the work most similar to ours that we have re-

viewed from the literature. This exercises will highlight the uniqueness of our

approach.

First, one other work has couched their experiments as acoustic sensing

using optically trapped microspheres [160], but in a dramatically different

regime. In that work, a 60 nm gold sphere is trapped in water and imaged at

50 Hz with a camera. Sounds are generated by 1) a CW laser beam focused

onto a nearby cluster of gold nanoparticles and intensity-modulated at 10 Hz to

50 Hz and 2) by a needle attached to a 300 Hz loudspeaker. Since the detection

method is slow, the methodology hinges on measuring the particle’s position
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variance in the presence of sound, and hence no time-dependent waveforms

may be measured. The authors claim to be able to detect sound power down

to a level of -60 dB. They do not specify the reference value of the dB scale, but

it appears to be 1 pW, the typical reference value for air-based measurements.

The quoted sound powers are at best an order of magnitude estimate. As a part

of their sound power level derivation they say “...the drag force exerted on the

nanoparticle is compensated at a certain maximum displacement xmax by the

restoring force of the optical trap: κxmax = 6πηvmax.” Yet, that force balance

does not hold at any single instant in time since for harmonic oscillations xmax

and vmax are 90◦ out of phase.

Similar methodologies to that in [160] have been used to make velocity

flow measurements in aqueous environments. In [158] a bacterium is opti-

cally trapped about 2 µm away from a 1.76 µm silica microsphere. The flow

generated by the bacterium’s rotating flagella bundle affects the microsphere’s

motion which is monitored using 500 Hz imaging and analyzed in the frequency

domain. In [159] the flow generated by a driven optically trapped microsphere

(R=0.88 µm) is measured in water. The drive is provided at 197 Hz by peri-

odically blocking and unblocking one of two traps transversely separated by

504 nm, causing the drive particle to jump between the traps. Detection is

provided by a second nearby optically trapped particle monitored with a 1000

Hz camera. The authors successfully map a steady, two-dimensional vectorial

flow field over an area of ∼20 µm2 by scanning the detection microsphere’s

equilibrium position.
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In a recent work termed optical tweezer-based velocimetry [161], a position-

sensitive detector monitors a microsphere optically trapped in a water-filled

sample chamber. The sample chamber is piezoelectrically driven at frequen-

cies of 1 Hz - 90 Hz. Velocity amplitudes of 1.5 µm/s - 70 µm/s are detected

in real-time. Such low amplitudes beat the thermal limit by using a Kalman

filter to deduce the flow velocity from microsphere position measurements in

the presence of Brownian motion. Their detection system’s bandwidth is not

specified, but they show spectra consistent with a sample rate of at least 2

kHz.

In another recent work [162], a silica microsphere (R = 2.77 µm) is

optically trapped in water and driven laterally at 50 Hz to 400 Hz. An addi-

tional 30 smaller polystyrene tracer particles (R = 0.505 µm), initially optically

trapped at fixed locations near the drive particle, are released upon starting

the drive. The free tracers follow elliptical Lissajous trajectories, in agreement

with theory.

Finally, in [163] a 5.20 µm diameter microsphere is trapped in water

that is contained within a 6.8 MHz, piezo-driven, standing-wave chamber. The

time-averaged microsphere position is recorded using a camera at 150 Hz. The

trap center can be adjusted over 100 µm×150 µm and the sample can translate

74 mm × 120 mm. The displacement of the microsphere from its equilibrium

position maps the standing-wave profile.

Our work presented in this Section is unique because it is performed in

air, it makes quantitative acoustic field measurements that are benchmarked
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against well-calibrated detectors, and it does so with enough time resolution

to observe acoustic waveforms at 4 kHz and 40 kHz, as well as impulsive

waveforms with frequency content in the megahertz-range.
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Chapter 5

Conclusions

5.1 Recapitulation

The work presented in this dissertation has tested the mass and sound

sensing capabilities of an optically trapped microsphere.

We have explored spectral and equipartition methods by which to sense

a microsphere’s inertial mass as it undergoes Brownian motion in air. With

the former, we accurately extract physical parameters of trap strength κ, mi-

crosphere density ρ, and detector calibration constant β with 3 seconds of

data. The initial spectral calibration step also yields the mass m1 with 3.2%

uncertainty. The subsequent equipartition method m2 achieves an uncertainty

of 4.3% in 0.3 seconds and is enabled by our detector’s ability to resolve the

microsphere’s instantaneous velocity.

To detect sound, we have developed a theoretical model describing the

air’s motion in terms of the microsphere’s motion. Sensitivity, self-noise, and

minimum-detectable signal amplitudes are all predicted using our model. In

contrast to inertial mass sensing, Brownian motion is interpreted as a source

of noise. Physically, the microsphere is entrained in the acoustic velocity

field and therefore follows it with a predictable amplitude and phase. Our
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model was verified by making simultaneous measurements with our system and

two state-of-the-art, commercially-available acoustic detectors when subject to

tone bursts at 4 kHz and 40 kHz. When subject to an impulsive sound source

derived from laser ablation, our microsphere resolves a 7.3× shorter rise time

and a ∼ 3× higher peak pressure than our high-bandwidth microphone.

5.2 Outlook and future applications

Having established our system’s ability to measure mass and sound,

what applications could be imagined for the future?

For mass measurement, we have in mind aerosol science. Already, opti-

cal traps combined with tools like laser spectroscopy provide researchers with a

unique platform for studying aerosols at the single-particle level [165]. Studies

of super-cooled organic droplets [166] and the formation of water [167,168] and

ammonium sulfate [169] crystals, all in an air environment, have been enabled

by optical trapping techniques. It would be fascinating to supplement these

experiments with fast position detection. Then, our technique for fast mass

measurement could monitor the growth of droplets and crystals in new ways.

Acoustic detection, especially with sensitivity at high frequencies, also

supports a few applications. For example, in proton therapy — an emerging

cancer treatment — high-energy protons are directed into a patient’s body,

aimed at a tumor. The protons deposit most of their energy in a well-localized

point within the tissue, known as the Bragg peak. While effective and non-

invasive, proton therapy suffers from a lack of real-time monitoring. Recent
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efforts have investigated the use of acoustic sensors to monitor proton therapy

in real-time, relying on the fact that an impulsive acoustic wave is sourced

at the Bragg peak [170, 171]. Another possibility is to detect similar proton-

generated acoustic waves occurring in bubble chambers — devices in which

fundamental particles leave tracks of bubbles as they pass through. Acoustic

detectors have already been used to veto “uninteresting” proton tracks in

bubble-chamber searches for dark matter [172–174].

The efficacy of acoustical monitoring for proton therapy and bubble

chamber particle physics is limited by the signal-to-noise ratio of the acoustic

sensor. Could an optically trapped microsphere provide an improved measure-

ment? The answer is not immediately clear because in both applications the

sound originates in a non-air environment (e.g. CF3I or C3F8 for a bubble

chamber or water for the human body). Nonetheless, our method for acoustic

detection is new and its operational principle has been proven. Further re-

finements are needed to maximize the methods’ sensitivity, to make it more

practical, and to test our model in alternative media. Our group hopes to

pursue these endeavors and others in the future

As a final remark, it is worth again highlighting that our mass and

sound measurements have been enabled by the resolution of a Brownian parti-

cle’s instantaneous velocity. There may well be other measurement protocols

that could benefit from similar detection capabilities. Moreover, could other

sensing applications be enabled by yet higher resolution position tracking?

Indeed, there exists an ultra-short time scale of Brownian motion where the
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compressibility of the surrounding fluid becomes relevant. Measurements in

this regime have not yet been performed, but our group has proposed a method

for doing so [175]. Verifying the velocity equipartition theorem in the com-

pressible regime of a liquid, that is, observing the bare rather than fluid-dressed

mass of a microsphere, would provide an exciting verification of statistical me-

chanics theory. Further, at such short time scales, we may be able to observe

the onset of viscous effects in the form of early-time non-exponential veloc-

ity correlation decay. Perhaps providing optical kicks at times shorter than

the onset of viscosity could move a microsphere as if it were immersed in a

superfluid, despite being coupled to water at room temperature.

Feynman famously said there is “plenty of room at the bottom” when

he (arguably) inaugurated the field of nanotechnology [176]. Pushing the limits

of experimental feasibility has always led to near-bottomless discoveries. As

Feynman points out, Onnes enabled low-temperature physics, and Bridgman,

by devising methods for high pressures experiments, “opened up another new

field and was able to move into it and to lead us all along.” It seems also

true that there is plenty of room at the bottom of the time-axis of Brownian

motion. Thus, we conclude this work, as is often done in the sciences, with

a question: What applications, theory confirmations, and genuine surprises

await us at the shortest time scales of mechanical motion in a fluid-coupled

environment?
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