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Abstract
We propose a highly efficient and fast method of translational cooling for
high-angular-momentum atoms. Optical pumping and stimulated transitions, combined with
magnetic forces, can be used to compress phase-space density, and the efficiency of each
compression step increases with the angular momentum. Entropy is removed by spontaneously
emitted photons, and particle number is conserved. This method may be an attractive alternative
to evaporative cooling of atoms and possibly molecules in order to produce quantum degenerate
gases.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Laser cooling, first proposed almost half a century ago,
remains the standard approach for producing ultracold atoms
[1, 2]. This method relies on momentum transfer from light to
atoms as photons are repeatedly scattered, enabling the pro-
duction and study of ultracold atomic gases. Many improve-
ments on basic laser cooling have advanced the state of the art,
including sub-Doppler Sisyphus cooling [3–7], and sub-recoil
degenerate Raman sideband cooling cooling [8, 9].

While laser cooling works extremely well, the requirement
of a closed, two-level transition has limited the applicability
of the method to a subset of elements in the periodic table.
For those atoms, after many years of refinement, laser cooling
has reached saturation in its performance due to multiple scat-
tering of resonant photons which create an effective repulsive
interaction between the atoms, pushing them apart. An import-
ant figure-of-merit is the phase-space density, a dimensionless
parameter which is the product of number density and the third
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power of the average de Broglie wavelength. Laser cooling
typically produces a phase-space density of 10−6. This is also
the starting point for creating quantum degenerate gasses with
order-unity phase-space density through evaporative cooling
in a trap [10, 11], and the creation of the so-called atom laser
[12–14]. Evaporative cooling is even more restrictive than
laser cooling, as it relies on elastic collisions between atoms
to maintain thermal equilibrium as the hottest atoms are ejec-
ted. Inelastic channels create unwanted losses and often make
evaporative cooling impossible. Even when working optim-
ally, evaporative cooling is a slow process and results in a sig-
nificant loss of atom number.

In recent years, alternative approaches to producing cold
atoms and molecules were developed (see [15] and references
therein). The starting point for much of this work is a super-
sonic molecular beam where desired atoms or molecules can
be entrained in the flow and stopped in a series of pulsed mag-
netic or electric fields. Alternatively, cold atoms andmolecules
are produced by buffer-gas cooling [16]. After stopping, these
atoms and molecules can be trapped, typically in a mag-
netic field configuration that confines the low-field seekers to
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Figure 1. A schematic depiction of the MOP-cooling sequence for
ensembles with angular momentum J= 1. The colored circles
represent atoms, initially trapped in a flat, hard-wall potential. The
colors represent the atom’s magnetic state (orange: mJ =−1,
purple: mJ = 0, teal: mJ =+1). A cycle begins with optically
pumping all atoms to the same state. Then, a sequence of stimulated
transitions correlate the magnetic states with position along the
direction of compression. A sequence of one-dimensional magnetic
kicks pushes atoms of oppositely-signed magnetic states together.
The cycle is closed by optically pumping the compressed atoms
back into the same magnetic state. A cycle’s compression factor
increases with the number of available magnetic states.

the center of the trap. In parallel, cooling of atoms with a
one-way wall was proposed and demonstrated [17–19], and
relies on photon entropy, not momentum as in laser cooling.
The one-way wall is the first practical realization ofMaxwell’s
demon for an ensemble of atoms. While one-way-wall cool-
ing demonstrated a large increase in phase-space density, it
did not conserve atom number. To address this limitation, we
proposed [20] a variation which we called magneto-optical
(MOP) cooling, relying on cycles of state preparation and
magnetic kicks.

In this paper, we present a generalized and highly effi-
cient version of MOP cooling that can work for high-angular-
momentum atoms and offers an attractive alternative to laser
cooling and evaporative cooling. Quantum gases of atomswith
high angular momentum have become of increasing scientific
interest over the last 20 years [21] making our method timely
and relevant to a growing community. As depicted schemat-
ically in figure 1, and described in detail below, the larger
internal-state space of high-angular-momentum atoms may
be leveraged to yield a greater compression of an ensemble
in real space. This is in contrast to our original proposal
[20] that focused on spin-1/2 systems. Our method will help
bridge the existing gap of approximately six orders of mag-
nitude between the phase-space density limits of standard sub-
Doppler cooling and evaporative cooling, thereby promising
larger ultracold samples.

In the following section, our simulation methodology is
described, followed by a brief review of MOP cooling for a
spin-1/2 system. Then MOP cooling is generalized for high-
angular-momentum atoms. We conclude the paper with a
discussion of possible limitations to our new method, how

those limitations may be overcome, and the significance of
MOP cooling in the atomic physics toolbox. The subsequent
appendix presents a one-dimensional model of MOP cooling
as an alternative to the detailed simulations that follow.

2. MOP cooling

MOP cooling is a conceptually new method that does not rely
on the momentum of the photon, making it completely dif-
ferent from laser cooling. The key benefit of this approach is
its universality and simplicity, since it relies only on internal
magnetic state preparation and magnetic forces from pulsed
coils. MOP cooling may be interpreted as a technique that
transforms the cooling of internal degrees of freedom via
optical pumping [22] to external degrees of freedom. Through
numeric simulations, we will evaluate the efficacy of MOP
cooling for atoms with different numbers of internal states.

Our MOP-cooling simulations track the three-dimensional
positions x, velocities v, and magnetic states mJ ∈
{−2J,−2J+ 1, . . . ,2J} of a sample of N= 105 atoms, each
with total angular-momentum quantum number J. The internal
magnetic state of each atom is initialized in accordance with
the MOP-cooling cycle (discussed further below). Positions
are initialized from a flat distribution of a 0.5 cm width.
Velocities are initialized from the Maxwell-Boltzmann dis-
tribution corresponding to a temperature of 25×Trec where
Trec = h2/MkBλ2 is the recoil temperature imposed by, e.g. a
magneto-optical trap operating at wavelength λ to trap a
species of mass M. Here, h is Planck’s constant and kB is
Boltzmann’s constant.

A fourth-order Runge-Kutta algorithm updates the posi-
tion and velocity of each atom subject to the force F(t) =
−mJgJµB∇|B(x, t)| where gJ is the Landé g-factor of the
atom’s ground state, µB is the Bohr magneton, and B is the
pulsed magnetic field arranged to provide the one-dimensional
kick. The simulation time step is one microsecond. Table 1
reports the atomic properties used in this study.

The magnetic field is modeled as two sets of coaxial coil
pairs, one in the Maxwell configuration to provide a strong
gradient [28] and the other in the Helmholtz configuration to
shift the zero-crossing of the field away from the ensemble’s
center, thereby providing a nearly-one-dimensional kick. We
use superposition of the exact solution for a current-carrying
loop to model the full coil geometry. B is evaluated on a dense
grid for unit current. Vector interpolation allows us to evaluate
∇|B(x)| at arbitrary positions. Time-dependent current pulses
are modeled by scaling the field gradient interpolation result
by I(t) = I0 sin[π(t− t0)/τ ] for t ∈ [t0, t0 + τ ] and I(t) = 0 oth-
erwise, where I0 is the peak current, t0 is the pulse delay, and
τ is the pulse width. In this paper, we set τ = 300 µs.

The simulated coil parameters are as follows. There are
7 turns × 2 layers, or 14 loops per Helmholtz coil, each
with a nominal radius of RHH = 3.5cm, axially-separated by
RHH, and carrying identically-oriented currents. There are 5
turns × 2 layers, or 10 loops per Maxwell coil, each with a
nominal radius of RHH/

√
3, separated by RHH, and carrying
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Table 1. Atomic properties used for simulation purposes. The
reference column provides an example of magneto-optical trap
operation for each species with a corresponding recoil temperature
T rec. Values for gJ are provided in [23], except for Li for which we
adopt the electron’s value.

M J gJ T rec

Atom (10−26 kg) (µK) References

Li 1.15 1/2 2.002 32 6.1 [24]
Cr 8.63 3 2.001 83 2.0 [25]
Er 27.83 6 1.163 81 0.3 [26]
Dy 26.98 8 1.241 59 0.3 [27]

oppositely-oriented currents. The peak currents are I0,HH =
1000A for the Helmholtz coils and I0,M = 800A for the
Maxwell coils. The shared midpoint between the coil pairs
is displaced by 0.2 cm in the positive z-direction from the
initial center of mass of the atomic sample (taken as the
origin of the coordinate system). We find that this region
provides a more uniform and one-dimensional kick. With
these coil parameters, the peak field gradients are approxim-
ately 1520G cm−1 along the kick direction and 45G cm−1

in the transverse directions. Two-dimensional slices of the
magnetic field gradient used in our simulations are shown in
figure 2.

For a specific example, consider atomic lithium (Li) trapped
using standard techniques [24]. At sufficient magnetic fields,
the electronic spin decouples from the nuclear spin yielding
a total angular momentum of J= 1/2; the two electronic mJ

states are denoted |1/2⟩ and |−1/2⟩ and it is in this high-field
regime that Li may be MOP-cooled as originally discussed in
[20]. The cooling sequence starts with suddenly turning off the
trap so that the atoms are free. In step (1) of MOP cooling, all
of the atoms are optically pumped to the |1/2⟩ state. Then, half
of the cloud is transferred to the |−1/2⟩ state by stimulated
transitions, i.e. stimulated Raman adiabatic passage sequences
[29, 30], thereby creating two spatially-distinct populations
(see figure 3(a)). In step (2), a magnetic-field-gradient kick is
applied to the cloud, thereby causing the two halves to merge
(figures 3(b) and (c)), and then a reverse kick returns the atoms
to their original velocity distribution (figure 3(d)). As demon-
strated experimentally in [31], such magnetic kicks can be
applied along a single axis while minimally affecting the other
two dimensions. In step (3), all atoms are optically-pumped
back to the |1/2⟩ state, thereby completing the cooling cycle.
In principle, a factor of 2× in phase-space compression is
possible.

We now generalize the method to a system with an arbit-
rary total angular momentum J. There are 2J+ 1 states in this
case, and we assume that the atoms are trapped in a hard-
walled flat potential. Just as in the case of Li above, we turn off
the trap to start the cooling sequence. Using optical pumping
and stimulated transitions in step (1), the cloud is divided into
2J+ 1 equally-sized components, where the leftmost section
is prepared in state |J,−J⟩, then |J,−J+ 1⟩, and so on, to the
rightmost section in state |J,J⟩. In step (2), a magnetic field
gradient kick is applied to the cloud, causing each sub-section
to move at a velocity that is proportional to its distance from

Figure 2. Two-dimensional slices of the magnetic field gradient
used for MOP cooling simulations, evaluated at peak current, and
shown (a) transverse-to and (b) along the kicking direction. The
black-and-white dashed line marks the initial extent of the atomic
cloud. The magnitude of the total field |B| varies primarily along z
in a nearly-linear fashion.

the center-plane. Thus, the stretched states |J,±J⟩ will move
the fastest towards the center, and lower magnetic-quantum-
numbered sections will move slower. The cloud will collapse
to a single section after an optimal delay time, and a reverse
magnetic kick will restore the original velocity distributions.
Finally, in step (3), all atoms are optically pumped to the |J,J⟩
state, and the cloud can be re-trapped. Ideally, the cloud has
been compressed by a factor of 2J+ 1.

Figures 3(e)–(h) show snapshots of the simulated phase-
space forMOP cooling of Dy atoms (J= 8) after state prepara-
tion (step 1) and during magnetic kicking (step 2). Comparing
the final spatial distribution of Li (figure 3(d)) to that of Dy
(figure 3(h)) clearly demonstrates how MOP cooling may
leverage high-angular-momentum atoms for efficient phase-
space compression.

The delay time between kicks is optimized in our numeric
simulations and the results are shown for a variety of atoms
in figure 4. As a figure of merit, we compute the compression
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Figure 3. MOP cooling simulations for Li (a)–(d) and Dy (e)–(h) visualized in phase-space. Each column of plots represents a snapshot
during the magnetic kicks required for a cycle. Initially, the magnetic states are correlated with position along the z-axis through optical
pumping followed by spatially-resolved coherent population transfer via stimulated transitions. The vertical dashed black lines in panels
(a) and (e) mark the ideal boundary between different magnetic states. In panels (b) and (f), a one-dimensional magnetic kick accelerates
atoms to a velocity that is proportional to their magnetic state. After waiting an optimized delay time the phase-space distribution has been
compressed in real space but remains extended in velocity space, as shown in panels (c) and (g). In panels (d) and (h), we show a reverse
kick returning the atom’s velocity distribution to near its original extent while preserving the spatial compression. More precisely, we find
the relative difference between standard deviations of the ensembles’ initial and final velocity distribution is below 0.2% for all coordinates
and all four species simulated.

Figure 4. Optimizing the wait time between the MOP cooling kick
and unkick according to the compression factor. The open circle
marks the optimal delay time for each species subject to the initial
conditions and magnetic forces described in the text. The inset
shows the peak compression factor vs the species’ angular
momentum J, compared to the geometric limit 2J+ 1 (black line).

factor as the ratio of standard deviations between the initial
and final z-coordinate distributions of the cloud. The inset of
figure 4 shows the peak compression factor for each species is
bound by the geometric limit 2J+ 1. In the following section
we consider some limitations of MOP cooling and how they
may be overcome in an experiment.

3. Discussion

In MOP cooling, a maximum compression factor of 2J+
1 per cycle may be approached. However, in practice,
the efficiency will be lower due to thermal expansion,

deviations from a flat density distribution, imperfect kicking
fields, and photon-recoil heating during the optical pumping
stage.

To better understand the influence of thermal expansion
and the initial density profile, we have developed a one-
dimensional analytic model of MOP cooling that is reported in
the appendix. A few key conclusions derived from our model
are now summarized. While the MOP cooling sequence pro-
gresses, the atomic ensemble’s initial standard deviation σ0

grows according to σ(t) =
√
σ2
0 + t2v2th where vth =

√
kBT/M

is the thermal velocity. Thus, after an MOP cooling sequence,
the ensemble has collapsed to a single section, but the sections
have grown from their initial size. The total time for one
sequence is t0 + τ and for simplicity let us assume t0 ≫ 2τ ,
i.e. the delay time between kicks is much longer than the
kicks’ combined pulse length. Additionally, a flat distribu-
tion of width 2s has a standard deviation σ = 2s/

√
12, so the

thermally-limited compression factor is approximately (2J+

1)/
√
1+ 12v2th/∆v

2 where ∆v= 2gJµBGτ/Mπ is the relat-
ive kick velocity of adjacent sections and G is the peak field
gradient. Thus, the geometric limit 2J+ 1 is only achieved for
∆v≫

√
12vth.

The flat-density initial condition is quite different from
that usually encountered with laser cooled atoms in an
magneto-optical trap, but turns out to be important for
the gains in efficiency that are predicted (details in the
appendix). For example, we predict a compression factor of
1.8 for Li initialized with with a flat density or 1.5 for a
Gaussian distribution. For Dy initialized with a flat density,
a peak compression factor of 14.4 is observed, while for an
initially-Gaussian distribution the factor reduces to 8.6. To
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obtain a flat ‘boxlike’ distribution in an experiment, the atoms
can first be confined in a magnetic quadrupole trap. An optical
box can be created around the atoms using a time-averaged
optical dipole potential from beams that are moving rapidly
in two dimensions. Such potentials were created in the past to
study optical billiards [32, 33] and BECs in painted potentials
[34]. After trapping, the box can be adiabatically expanded in
three dimensions to a desired size, which will result in a nearly
flat density profile of atoms. The optical setup for state prepar-
ation of each segment would enable multiple cycles of cooling
in each dimension. Adiabatic expansion would lower the kin-
etic energy and MOP cooling would compress the cloud spa-
tially. The process can be dynamically controlled with motor-
ized zoom lenses [35].

Ideally, a complete cycle of MOP cooling leaves the velo-
city distribution of the atomic sample unchanged. This means
that the momentum imparted on the atoms in the kick phase
must be nulled in the reverse-kick phase. Inhomogeneities in
the kicking field will result in a nonzero mean velocity for the
cloud. Such inhomogeneities are noticeable in figure 2(b) that
shows the peak magnetic field gradient in the x= 0 plane. For
instance, atoms near z= 0.25 will be kicked downward with
slightly less force than their upward motion-arresting kick that
is applied once they are near z= 0. Our simulations suggest
this effect is negligible for the chosen field and cloud paramet-
ers, but it becomes relevant for larger clouds or less uniform
field gradients. Moreover, there exist advanced wiring-design-
optimization techniques to generate uniform bias or gradi-
ent fields with minimal inductance [28, 36]. Though origin-
ally developed for magnetic resonance imaging, MOP cooling
could benefit from such analyses to improve switching times
of the pulsed magnetic fields and increase the uniformity of
the required biased gradients, thereby enabling MOP cooling
of larger ensembles. A possibly more significant mean velo-
city is incurred due to free fall in the Earth’s gravitational
field. For example, in the ∼3.5ms of delay time required for
MOP cooling of Cr, the cloud accelerates to nearly 3.5 cm s−1

and displaces 0.67 mm. Such velocities and displacements are
within typical capture ranges of atomic traps, though some loss
upon re-trapping should be expected. To mitigate the free fall
effects, one could use the MOP cooling setup to apply an addi-
tional uniform kicks against gravity.

In general, optically pumping the cloud to the same mag-
netic state is a lossy step due to, for instance, atoms decaying to
unobserved trap states. Fortunately, there exist efficient tech-
niques for optical pumping as discussed in [37], where it is
shown that it is possible to perform optical pumping with only
one spontaneous photon emitted per atom. The same physics
lets us understand MOP cooling’s high phase-space compres-
sion efficiency in terms of the photon entropy carried away
from the ensemble by spontaneous emission [38].

The entropy associated with the motional degrees of free-
dom is given by Smo. = kB ln(V/VQ), where V is the phase-
space volume and VQ is a reference volume. The ensemble’s
volume is reduced by a factor of (at most) 2J+ 1 at each
cooling step, so the maximum entropy reduction per step
is ∆Smo. = kB ln(2J+ 1). The magnetic kicks are reversible

evolution, so they do not produce a net change in entropy.
Therefore the entropy change must occur during the optical
pumping step. Optical pumping of an unpolarized ensemble
to produce a pure state reduces the polarization entropy by
∆Spol. = kB ln(2J+ 1). Thus for each step, (1) optical pump-
ing takes unpolarized state to pure state, reducing polariza-
tion entropy by kB ln(2J+ 1); (2) magnetic kicks take the pure
state to an unpolarized one by overlapping the sub-ensembles,
increasing polarization entropy by kB ln(2J+ 1) and reducing
motional entropy by the same amount. The cooling must ulti-
mately be limited by recoil heating. If single-photon optical
pumping efficiency is achieved and spatial compression con-
verted to temperature reduction through adiabatic expansion,
the temperature limit will correspond to the recoil temperature
T rec. For less efficient optical pumping the temperature limit
will be higher.

The conceptual significance of MOP cooling is two-fold.
First, in species that have already reached quantum degeneracy
with the aid of laser cooling, MOP cooling can reduce losses
induced by the typical final step of evaporation. Alternative all-
optical approaches have produced degenerate 87Rb samples
while avoiding evaporation: Raman cooling in combination
with either optical compression cycles [39] or far-off-resonant
optical pumping [40] have reached degeneracy within 300 ms
or 1.4 s, respectively. The present simulations predict that
a single cycle of MOP cooling for Dy will compress the
extent of the ensemble along one dimension by a factor of
14.4 within just 3 ms. This compression increases the num-
ber density, and therefore also the phase-space density, by the
same factor. Hence, if initially laser cooled to a phase-space
density of ∼10−6, MOP cooling may bring Dy to degeneracy
within six cycles or about 20 ms. Second, in species lacking
a sufficiently-closed two-level cycling transition, MOP cool-
ing provides an alternative technique that only requires optical
pumping, coherent population transfer, and pulsed magnetic
fields. Here, we have shown that the efficiency of MOP cool-
ing can be increased by leveraging larger internal state spaces.
Therefore, a particularly enticing possibility for future work
is the application of MOP cooling to ultracold molecules [41,
42]. A rich internal-state structure makes laser cooling pro-
hibitively challenging for most, though not all [43], molecu-
lar species. On the other hand, molecules may be cooled
quite generally to the single-kelvin regime via buffer-gas col-
lisions or supersonic expansion [16], and perhaps MOP cool-
ing could push molecular ensembles to yet-higher phase-space
densities.

4. Conclusion

In this paper, we proposed a highly efficient method for
phase-space compression of high-angular-momentum atoms.
This work extends an earlier MOP-cooling proposal from Li
to general high-angular-momentum atoms. We numerically
tested our new MOP-cooling protocol on four atomic species
of increasing angular momenta that have each already been
cooled using traditional techniques. We find, for example, an
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impressive compression factor of 14.4 is conceivably attain-
able in less than 3 ms for the case of Dy.
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Appendix. One-dimensional model

In this appendix, we develop a one-dimensional model for
MOP cooling. We consider the compression limits imposed
by (1) geometry of the initial spatial distribution of atoms and
(2) thermal free expansion during the required time-of-flight to
complete a MOP cooling cycle. To this end, we begin with the
more complicated case of an initially-Gaussian spatial distri-
bution. Ignoring free expansion, we determine an optimal par-
titioning scheme that splits the initial distribution into 2J+ 1
sections. Then, we consider how the shape of each Gaussian
partition changes over the time of flight required to merge the
sections. Finally, we repeat the analysis for an initially flat
distribution.

General setup

Consider a one-dimensional, classical, non-interacting gas
composed of a constant number of atoms with massM trapped
in a potentialV(x) and in thermal equilibrium at temperature T.
The energy of an atom is Mv2/2+V(x) when it is at position
x with velocity v. The probability for an atom to be found in
the phasespace area (x+ dx)× (v+ dv) is ρ(x,v)dxdv where
the probability density is given by the Boltzmann factor

ρ(x,v) = ρ0e
−[Mv2/2+V(x)]/kBT, (A.1)

and the constant ρ0 normalizes the density such that it integ-
rates to unity. Therefore, the real-space probability density is
given by the marginal

P(x) =
ˆ ∞

−∞
dvρ(x,v) = ρ0

√
2π v2the

−V(x)/kBT, (A.2)

where we have defined the thermal velocity vth =
√
kBT/M.

In MOP cooling we imagine slicing the initial density dis-
tributionP(x) into 2J+ 1 sections, where the left-most section

is labeled by mJ =−J, followed by −J+ 1, and so on to
the right most section labeled mJ = J. Then, each section is
kicked to a velocity v0 ∝−mJ such that the distribution is
compressed. Our goal is to develop a model allowing us to
optimize the MOP cooling protocol for maximum compres-
sion. As a figure of merit, we compute the compression factor
as the initial-to-final ratioR of the spatial distribution’s stand-
ard deviation. We restrict our attention to cases in which
P remains symmetric around x= 0 so that the distribution’s
standard deviation is the square-root of its second moment.
Therefore, the compression factor isR≡

√
⟨x2⟩Pinitial/⟨x2⟩Pfinal

where

⟨x2⟩P =

ˆ ∞

−∞
dxx2P(x). (A.3)

Note that maximizing R is equivalent to minimizing R−2,
i.e. the ratio of the distribution’s final-to-initial variance.

Compression limits for a Gaussian distribution

When trapped in a harmonic potential V(x) =Mω2
0x

2/2, the
real-space probability density is Gaussian

PG(x) =
1√
2πσ2

0

e−x2/2σ2
0 , (A.4)

where we have evaluated the phase-space normalization con-
stant ρ0 = 1/2π vthσ0 and defined the density’s variance σ2

0 =
kBT/Mω2

0 . The initial standard deviation in this case is simply
σ0 = vth/ω0.

Define the intervals (a,b)mJ that specify the partitioning of
the initial distribution as

(a,b)mJ = δσ0

 (−∞,−(2J+ 1)] mJ =−J
((2mJ− 1), (2mJ+ 1)] |mJ|< J
((2J− 1),∞) mJ = J

(A.5)

where 2δ > 0 represents the distance between adjacent
sections in units of σ0. At the end of a MOP cooling cycle,
these sections have collapsed. Figure A1 depicts examples of
the initial and final distributions for J= 1,2.

Geometric limit If the section collapse occurs much faster
than thermal free expansion, then the observed compression
is limited by the initial distribution’s shape. Typographically,
we will use a hat over functions and optimized variables to
distinguish this geometric limit from the more general results
presented later, which account for thermal free expansion. In
the present case of an initially-Gaussian distribution, the final
distribution is

P̂(x) =


PG(x− 2Jδσ0) x<−δσ0

J∑
mJ=−J

PG(x− 2mJδσ0) |x|< δσ0

PG(x+ 2Jδσ0) x> δσ0.

(A.6)

6



J. Phys. B: At. Mol. Opt. Phys. 56 (2023) 155301 L E Hillberry et al

Figure A1. The initially Gaussian (a) and (b) and final (c) and
(d) distributions for MOP cooling of with J= 1 ((a) and (c)) and
J= 2 ((b) and (d)). Colors correspond to mJ sections, as labeled in
panels (a) and (b), and the black lines mark the total distribution.
Here, δ was chosen according to equation (A.11).

Figure A2. (a) The compression factor for various ways of splitting
and merging a Gaussian distribution, as given by equation (A.7). We
numerically extract the peak compression factor R̂opt and
corresponding relative half-width δ̂opt. and show their J-scaling in
panels (b) and (c), respectively. The solid lines in (b) and (c) result
from the simultaneous fit to equations (A.10) and (A.11),
respectively.

As for the compression factor R̂, the required integral (A.3)
may be evaluated to give

R̂−2(δ,J) = 1− 2δS1(δ,J)+ 4δ2
[
J2 − S2(δ,J)

]
, (A.7)

which is valid for both integer and half-integer J and where we
have defined the two parameterized summations

S1(δ,J) =

√
2
π

J−1∑
mJ=−J

exp

[
−δ2(2mJ+ 1)2

2

]
(A.8)

S2(δ,J) =
1
2

J−1∑
mJ=−J

(2mJ+ 1)Erf

[
δ(2mJ+ 1)√

2

]
. (A.9)

In figure A2(a) we show R̂ as a function of δ for various J.

Equation (A.7) provides a way to optimize δ for a given
J by solving ∂R̂−2/∂δ = 0 for δ ≡ δ̂opt. Using the identity
S ′
1(δ,J)/S

′
2(δ,J) =−2δ, where the prime denotes a deriv-

ative with respect to δ, we deduce 4δ̂opt.[J2 − S2(δ̂opt.,J)]−
S1(δ̂opt.,J) = 0. Thus, the corresponding optimal compres-
sion factor R̂opt.(J) = R̂(δopt.,J) is given by R̂−2

opt. = 1−
δ̂opt.S1(δ̂opt.,J). The transcendental form of the above optimiz-
ation equations precludes a closed form solution. Fortunately,
numeric root finding allows us to quickly and accurately obtain
δ̂opt.. Empirically, we find that the numerically-optimized
δ̂opt.(J) and the corresponding R̂opt.(J) are well fit, simultan-
eously, to the models,

R̂opt.(J)≈ A1(2J+ 1)B (A.10)

δ̂opt.(J)≈ A2(2J+A3)
−B , (A.11)

as shown in figures A2(b) and (c). Our fit yields A1 = 0.89,
A2 = 1.82, A3 = 1.61, and B= 0.85. The fitted functions and
numeric optimizations agree with an average relative error of
0.33% for R̂opt. and 0.08% for δ̂opt. for integer 1⩽ J⩽ 10.

Thermal limit Due to finite magnetic kick strengths, MOP
cooling requires a finite time-of-flight to reach peak com-
pression. Due to the ensemble’s finite temperature, the spa-
tial and velocity distributions correlate via free expansion,
meaning each section becomes more Gaussian-like over the
required time-of-flight. Towards a model of MOP cooling
including these effects, let us compute the time-dependence
of an initially-Gaussian spatial distribution subject to thermal
free expansion and translation at a constant kicking velocity
v0. We are particularly interested in the time dependence of
a subsection of such a distribution that initially occupies the
interval (a, b), denoted Psec. [x, t;v0,(a,b)]. Microscopically,
the atom trajectories obey v̇= 0 and ẋ= v+ v0, so, by
Liouville’s theorem, we may write the time-dependent
phase-space density as ρ(x− (v+ v0)t,v). The real-space
marginal is

Psec. [x, t;v0,(a,b)] =
1

2πσ0vth

ˆ x−a
t −v0

x−b
t −v0

dv (A.12)

× exp

(
− v2

2v2th
− [x− t(v+ v0)]2

2σ2
0

)
=

1

2
√
2πσ2

0 f
2
t

exp

(
−[x− tv0]2

2σ2
0 f

2
t

)

×
[
Erf

(
bf2t + tv0 − x√

2ftvtht

)
−Erf

(
af2t + tv0 − x√

2ftvtht

)]
where we have defined f 2t = 1+ t2v2th/σ

2
0 and Erf is the error

function. When (a,b) = (−∞,∞), then the factor in square
brackets becomes 2, and the result is familiar from time-of-
flight analysis of harmonically trapped ensembles. To model
MOP cooling, we set the kicking velocity to v0 =−mJγvth,
where γ > 0 measures the kicking strength in units of the

7
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Figure A3. Time-dependent MOP cooling model for a kicking
strength of γ= 5 and including effects of free expansion. The initial
distributions are shown for (a) J= 1 and (b) J= 2. Similarly, panels
(c) and (d) show this distributions after a time topt./4 for J= 1 and
J= 2, respectively. After a time topt. the distributions have minimal
variance and are shown shown for (e) J= 1 and (f) J= 2.

thermal velocity, and then sum the distribution sections over
the intervals given in equation (A.5):

P(x, t) =
J∑

mJ=−J

Psec. [x, t;−mJγvth,(a,b)mJ ] . (A.13)

Figure A3 shows the time-dependent, real-space probabil-
ity density for J= 1,2 and γ= 5 at times t= 0, t= topt./4, and
t= topt. where topt. ≈ 2δσ0/γvth is the optimal delay time after
which the sections have collapsed.

From the probability density (A.13) we may evaluate the
compression factor R. It is convenient to introduce the non-
dimensional time τ such that t= τσ0/vth. Then, the final result
reads

R−2(τ,δ,γ,J) = 1 −τγS1(δ,J) (A.14)

+τ 2
[
1+ γ2J2 − γ2S2(δ,J)

]
.

The geometric limit (A.7) is recovered from (A.14) for γ →∞
and τ →∞ such that τγ → 2δ.

From (A.14), the optimal delay time topt. = τopt.vth/σ0 may
be expressed in closed form upon solving ∂R−2/∂τ = 0 for
τ ≡ τopt., yielding

τopt.(δ,γ,J) =
γ

2
S1(δ,J)

1+ γ2J2 − γ2S2(δ,J)
. (A.15)

On the other hand, optimizingRwith respect to the relative
half-width δopt. for given angular momentum J and kick
strength γ requires numeric minimization of equation (A.14).
Similarly to the geometric-limit case, analytic optimiza-
tion implies 4δopt.[1+ γ2J2 − γ2S2(δopt.,J)]− γ2S1(δopt.,J) =
0 and R−2

opt.(γ,J) = 1− δopt.S1(δopt.,J) where Ropt.(γ,J) =
R(τopt, δopt.,γ,J).

Compression limits for a flat distribution

When trapped in a box-like potential of width 2s0, V(|x|>
s0) =∞ and V(|x|⩽ s0) = 0, the ensemble’s spatial distribu-
tion PF(|x|< s0) = 1/2s0 is flat and has a standard deviation
σ0 = s0/

√
3. For a flat distribution, deciding how to parti-

tion the (2J+ 1) sections for MOP cooling is simpler than
in the Gaussian case. The flat distribution only has support
over the interval (−s0, s0), so it is intuitive to split the ini-
tial distribution into a number 2J+ 1 of equally sized sections
such that each section contains an equal number of atoms.
That is, the intervals of each section are finite and given
by

(a,b)mJ =

(
s0
2mJ− 1
2J+ 1

, s0
2mJ+ 1
2J+ 1

)
. (A.16)

In the geometric limit, all sections remain flat and
merge to a single section of width 2s0/(2J+ 1) and
hence the geometrically-limited compression factor is
R̂opt.(J) = 2J+ 1.

Including the effects of thermal and mean velocity, we find
the time-dependent spatial distribution of a section initially
occupying the interval (a, b) is

Psec.[x, t;v0,(a,b)] =
1
4s0

[
Erf

(
b−x+tv0√

2tvth

)
(A.17)

−Erf
(
a−x+tv0√

2tvth

)]
.

As in equation (A.13), the kicking velocities for each section
are v0 =−mJγvth and the total distribution is the sum of each
section’s distribution. The initial variance is given by σ2

0 =
s20/3. Introducing the non-dimensional time τ = tvth/s0 allows
us to express the compression factor as

R−2(τ,γ,J) = 1 −τγ 4J(J+1)
(2J+1) (A.18)

+τ 2
[
3+ γ2J(J+ 1)

]
.

Equation (A.18) connects to the simulations discussed in
the main text. In figure A4 we compare equation (A.18)
to the simulation results presented in figure 4. We have
set T= 25Trec and γ =∆v/vth where ∆v= 2gJµBGτ/Mπ
is the relative kick velocity of adjacent sections and G is
the peak field gradient. With no remaining free parameters
our one-dimensional model and simulations, which include
realistic kicking profiles, are in excellent agreement.

8
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Figure A4. The data points are reproduced from figure 4 of the
main text and the dashed lines correspond to equation (A.18), to the
minus-one-half power, with γ and vth set in accordance with the
simulations, i.e. no free parameters.

For large enough γ, we expect the time at which R
is maximized is when all sections have merged at topt. ≈
2s0/γvth(2J+ 1). At this time, the compression factor accord-
ing to equation (A.18) evaluates to

Ropt.(γ,J)≈
(2J+ 1)√
1+ 12/γ2

. (A.19)

Equation (A.19) is identical to that given in the discussion
section of the main text. More precisely, solving ∂R−2/∂τ =
0 for τ ≡ τopt. gives

τopt.(γ,J) =
2γJ(J+ 1)

(2J+ 1) [3+ γ2J(J+ 1)]
(A.20)

=
2

γ(2J+ 1)
+O(γ−2)

Ropt.(γ,J) = (2J+ 1)

[
3+ γ2J(J+ 1)

3+ J(J+ 1)(γ2 + 12)

]1/2
. (A.21)

The second equality in (A.20) comes from a first order
expansion in γ−1 and recovers our γ →∞ expectation.
Approximation (A.19) is accurate to better than 10% (1%) of
equation (A.21) when γ ⩾ 2 and J= 1 (J= 5), and accuracy
improves monotonically with increasing γ and J.

The one-dimensional models defined in this appendix are
useful to understand the scaling properties of MOP cooling
for both Gaussian and flat density profiles. We have outlined
techniques for optimization that provide engineering specific-
ations and enable sensitivity analyses for the design of real
experimental systems. In the main text, we focused on atomic
simulations rather than the models defined here because they
not only include thermal free expansion effects, but also three-
dimensional, time-dependent kicking forces. In the future,
it may be possible to extend our models to include effects
like kicking inhomogeneities and finite kicking duration as
well as quantum-statistical effects and state preparation details
ignored by the main-text simulations.
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résonance magnétique J. Phys. Radium 11 255–65

[23] Kramida A, Ralchenko Y and Reader J (NIST ASD Team)
2022 NIST Atomic Spectra Database (ver. 5.10) National
Institute of Standards and Technology, Gaithersburg, MD
(available at: https://physics.nist.gov/asd) (Accessed 5
December 2022)

[24] Hulet R G, Nguyen J H V and Senaratne R 2020 Methods for
preparing quantum gases of lithium Rev. Sci. Instrum.
91 011101

[25] Bradley C C, McClelland J J, Anderson W R and Celotta R J
2000 Magneto-optical trapping of chromium atoms Phys.
Rev. A 61 053407

[26] Frisch A, Aikawa K, Mark M, Rietzler A, Schindler J,
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